光学微腔构建新一代超声波传感技术 | 进展

作者: 李贝贝

来源: Light: Science & Applications

发布日期: 2024-07-15

光学微腔超声传感器在超声波传感领域展示了其显著提高探测精度的潜力,通过集成在硅芯片上,这些微腔传感器能够降低成本和功耗,提高空间分辨率,在光声断层扫描等应用中具有广泛前景。

超声波广泛应用于生物医学成像、工业无损检测、交通系统等领域。在生物医学成像方面,超声波技术具有无电离辐射、实时成像、成本低廉等优势,成为常用的早期疾病诊断工具。医生借助超声波成像可以实时监测胎儿发育情况、检查心脏功能、诊断肿瘤等。同样地,工业界也大量依赖超声波技术进行流量测量、过程控制和材料无损检测等。

此外,超声波系统在交通领域也扮演着关键角色,应用于倒车雷达、物体识别和自动避障等功能,为智能驾驶提供可靠支撑。这些广泛的应用需求都离不开高性能的超声波传感器。

在过去几十年里,压电换能器占领着超声传感市场的主要地位,但它们在灵敏度、带宽和微型化等方面存在局限性。压电换能器的灵敏度随着传感面积的减小迅速下降,这将传感器的尺寸限制在毫米到厘米的范围内。

为了克服这些局限,研究者基于微加工技术发展了微机电系统(MEMS)超声波传感器,如电容式微机械超声换能器(CMUTs)和压电式微机械超声换能器(PMUTs)。这些MEMS超声波传感器可实现更高的响应带宽和灵敏度,同时具有集成和微型化的潜力。然而,它们同样容易受到电磁干扰,并且由于其传感器结构不透明,在多模态成像方面存在挑战。

近年来,光学超声传感器已经成为超声波传感领域中一个重要研究方向。其中具有高品质因子的光学微腔利用其光学共振可显著提高探测精度,近年来已被广泛应用于超声波传感。此外,硅芯片上集成的光学微腔可批量制备,尺寸较小,因此可降低成本和功耗,有望在光声断层扫描等应用中实现较高的空间分辨率。目前,光学微腔已在各种超声传感应用中都展示出了优势和潜力。

中国科学院物理研究所/北京凝聚态物理国家研究中心的李贝贝特聘研究员团队近年来致力于设计并制备基于回音壁模式光学微腔的超高灵敏度超声波传感器,并取得了一系列进展。基于过往的研究和对大量资料文献的总结,该课题组对基于光学微腔的超声波传感器原理及发展进行了梳理,撰写了综述文章“Ultrasound sensing with optical microcavities”。文中归纳了超声波传感器的应用场景。

还总结了几类常用的微腔超声波传感器包括:法布里-珀罗(F-P)腔,π相移布拉格光栅与回音壁模式(WGM)微腔。这篇综述概述了基于三种类型的光学微腔的超声波传感机制,并讨论了如何优化超声波传感器的关键参数,关注了光学微腔实现超声波传感应用的最新进展并对其性能进行了总结。

此外,本文还介绍了光学微腔超声波传感器在不同探测场景中的应用,例如光声成像、测距和粒子检测等方面,为未来高性能超声波成像和传感技术的发展提供了重要参考。相比于传统压电超声波传感器,先进的光学微腔超声波传感器不仅能提高检测灵敏度和空间分辨率,还具有体积小、集成度高等优势,有望在生物医学成像、工业无损检测等领域带来革命性变革。

这种基于光学微腔的新型超声波传感技术,必将为超声波在各领域的应用带来新的机遇和发展空间。

相关研究成果以“Ultrasound sensing with optical microcavities”为题,在线发表在《Light: Science & Applications》期刊。中国科学院物理研究所博士研究生曹雪凝为第一作者,李贝贝特聘研究员为本文通讯作者。该工作得到了基金委、科技部、中国科学院等项目的大力支持。

UUID: af69fa0e-aed0-48e0-bec7-03a5cb2e5ea7

原始文件名: /home/andie/dev/tudou/annot/微推助手/中科院物理所/中科院物理所_2024-07-15_光学微腔构建新一代超声波传感技术进展.html

是否为广告: 否

处理费用: 0.0039 元