东方“巨眼”:深空探测的幕后功臣原创 陈欢欢 中国科学报 2024-07-12 07:50:23收录于话题#科技自立自强之路文 | 《中国科学报》 记者 陈欢欢 嫦娥六号回家啦!6月25日,嫦娥六号携带1935.3克月背样品成功返回,实现了人类首次月背采样返回的壮举。这次任务也为中国探月工程立项20周年献上了一份大礼。
20年来,我国不仅成功实施了月球探测任务,还成功实施了火星探测任务,开启全面建设航天强国新征程。这其中,甚长基线干涉测量(VLBI)技术发挥了重要作用。中国科学家的智慧和勤奋,令这一技术大放异彩,也令国际学术界赞叹:将准实时VLBI技术应用于月球与深空探测,已经成为特色鲜明的中国招牌!而VLBI技术同中国结缘,归功于今年已97岁高龄的中国科学院院士叶叔华。
射电望远镜的口径越大,看得越清楚,但成本也越高,且口径不可能无限增大。于是,科学家想出一个办法,把两台或多台望远镜组合成一台“巨型望远镜”,这就是VLBI技术。每两台望远镜之间的距离就是它的等效口径,也叫基线。基线越长,这只“巨眼”看得就越清楚。例如,人类首张M87黑洞照片就是天文学家利用全球8台VLBI射电望远镜获得的。
VLBI技术自20世纪60年代问世以来,一直是所有天文观测技术中空间分辨率最高的,比哈勃空间望远镜的分辨率高数百倍。20世纪70年代初,时任中国科学院上海天文台时间纬度测量研究室负责人的叶叔华从一份国际学术期刊上看到,新出现的VLBI和人造卫星激光测距等技术,测量精度比传统技术提高1~2个数量级,推动天体测量界发生了革命性变革。叶叔华判断,我国如果不及时发展这些新技术,将来势必要落后。
在她的积极建议下,上海天文台将VLBI、人造卫星激光测距及氢原子钟等新技术确定为新开拓领域,1973年组建射电天文研究小组,正式开启VLBI技术预研工作。天文观测由于极度依赖设备,常被戏称为“富人的游戏”。叶叔华提出,先在上海佘山建设25米口径射电望远镜。要建这么大的射电望远镜,首先要解决经费问题。叶叔华单枪匹马来到当时的第四机械工业部,找到相关工作人员询问能否支持建设一个25米口径射电望远镜。
对方头都没抬就说不行。叶叔华站了一会儿,又提出:“我能不能见部长?”对方这才抬起头来,仔细打量这位貌不惊人的女科学家。没想到,主管相关工作的四机部副部长王士光真的接待了她,并同意支持。这次主动争取为上海天文台带来一次发展机遇,也为30年后的嫦娥探月埋下伏笔,但在当时却引发了不小的争议。从无到有,要进行VLBI测量,至少需要两台射电望远镜形成干涉信号,最好是3台。
叶叔华根据我国国情,提出在上海、昆明、乌鲁木齐三地建设观测站,形成中国VLBI网。这一三角形基本覆盖我国国土面积,最长基线为从上海到乌鲁木齐约3200公里。经过5年预研,1978年,在中国科学院和四机部联合召开的论证会上,上海天文台正式提出这一技术方案,并在次年获准立项。但难度依然很大。VLBI技术是一项高精尖技术,在我国完全是空白,只能边学边干。
20世纪末,国家正式组织探月工程论证,中国科学院是重要的参与单位之一。当时,对探月航天器的测控成为重大难题:成熟的无线电测距测速技术,最远测控距离可达约8万公里;但嫦娥一号卫星进入绕月轨道后,最远距离达40万公里。如何突破这一技术瓶颈?本世纪初,上海天文台提出将VLBI技术应用于探月卫星实时跟踪测轨的建议,结合我国已有的航天测距测速技术,共同完成高精度测定轨及定位任务。
上海天文台研究员、原台长洪晓瑜介绍,原有的测距测速方法,其长处是视向测量,而VLBI的长处为横向测量,两者结合,相辅相成,是“一加一大于二”,可以测定航天器的瞬时三维位置、实现短弧段精确定轨。这一提议极为巧妙,也极为大胆。国际上,美国是首个将VLBI用于航天的国家,曾在阿波罗计划中用射电天文干涉的办法测量了月球车的路线。我国则是首个将VLBI用于航天器实时测轨的国家。
从嫦娥一号到嫦娥六号,任务难度不断升级,中国科学院科研团队的能力也在不断提高。上海天文台研究员郑为民在加入VLBI项目组后,主攻核心设备VLBI处理机的研发。在认识到软件处理机是趋势后,他用5年时间瞄准一件事——开发相关处理软件。他说:“只要是国家有重大需求的领域,都是我们值得做的。”
2012年,高约70米、重约2700吨的上海65米口径天马望远镜落成,这是一台全方位可转动的大型射电望远镜系统,综合性能位居世界同类型射电望远镜前三。2013年,它作为主力测站参与嫦娥三号VLBI测定轨任务,使得测轨精度有较大提高,在后续任务中发挥了重要作用。
到嫦娥五号任务时,为满足对轨道器与上升器同时测轨的需求,上海天文台突破一系列关键技术,在国际上首创了“动态双目标同波束实时VLBI测轨系统”,采用一个VLBI网,助力我国首次月面起飞以及人类首次月球轨道无人交会对接任务圆满完成。
嫦娥探月六战六捷,但这并不是极限。2020年,我国实施首次火星探测任务,天问一号在火星表面首次留下中国印迹。从地球到火星,最远距离4亿公里,历时7个月,是谁在指路?答案还是VLBI与测距测速联合作业。
未来几年,我国还将密集实施嫦娥七号、天问二号等任务。由于深空探测工程发展迅猛,VLBI网的观测目标从过去几年一个,发展到一年几个,甚至一次任务中需要同时测量不同天区的两个目标探测器,现有的“四站一中心”模式已无法满足这一需求。
目前,上海天文台正在西藏日喀则和吉林长白山建设两台40米口径射电望远镜。建成之后,中国VLBI网将形成“六站一中心”的局面,任意3个站一组形成两个子网,像两只“巨眼”同时测量不同天区的两个探测器,综合测量能力提升一倍,最长基线延长至3800公里。
科学无止境,科学家永不满足。空间VLBI被认为是未来发展的必然趋势,也就是将VLBI望远镜发射至太空,大幅延长基线。今年3月20日发射的鹊桥二号中继星就搭载了上海天文台研制的月球轨道VLBI试验系统,将使VLBI基线的长度延伸到地月距离。我国也将成为继美国、日本、俄罗斯之后,世界上第四个在空间开展VLBI科学试验的国家。
展望未来,随着航天科技的进步,中国VLBI技术的发展还将迎来新高潮。