数学家谈怎样学数学

作者: 越民义

来源: 《数学家谈怎样学数学》(黑龙江教育出版社,1986年09月第1版)

发布日期: 2024-06-26

著名数学家越民义总结了学习数学的经验,强调兴趣和努力的重要性,指出学习应循序渐进,重视基础知识和训练,并强调学习的目的在于解决实际问题。

著名数学家、中国运筹学的开拓者和带头人越民义,根据自己学习数学过程中的失败经历,总结出怎样学数学的经验。他谦虚地认为,这些失败的经验对于后之来者虽不能导引“方向”,却并非没有指出“迷津”的用。

数学是一门使人着迷的学科,但它却不像文学那样容易使人接近。一个作者在创作一篇(部)文艺作品时,心里往往不知不觉地怀想着广大读者,希望从他们那里得到共鸣,唤起他们的某种钦佩或同情。

而多数数学工作者在创造某一成果时,心里怀想的主要是他的(小)部分水平比他更高的同行,希望以一种优胜者的姿态引起那些人的钦佩或赞赏。不重视同行的评价,而只希望得到社会多数群众的同情和钦佩的,这样的数学家,我想,不能说没有,但为数不会很多。因此,数学上的定理,从它们出现的过程来说,就难说具有主动地去赢得广大群众欣赏的愿望,人们就谈不上会自然地去接近它们。

一个青年人开始喜欢数学,往往是由于他自觉或不自觉地经过一段或长或短的时期的努力之后,使他感到比其周围的人胜过一筹,使他感到,对于这种被普遍看作是难于对付的学科,他却有某种程度的过人之处,多少怀着一种优胜者的心情向前迈进。这时,他会对于解决数学难题感到乐趣,数学才把他“迷住”。他越是被迷住,学习就会变得刻苦深入,成绩自然也就会显著提高,兴趣也就越来越大。

所以,对于数学的爱好(或兴趣)是后天养成的,是经过刻苦的努力产生的,不是先天的。

有的人,在幼年时代对于数学计算或对某些简单几何图象的识别或想象,比他周围同年龄的人高一些,后来他又以数学为职业。这种情况往往使他感到具有一种天生的数学才能,甚至生来就是要搞数学这门行业的。我们认为天生的某些才能只是有助于他容易对数学感兴趣,他对数学的爱好是后天的。除个别之外,一般人的才能差不了多少。

我在高中上学时,从二年级开始分文理班,由于要求学理科的人多,到理科班需要通过考试。我数学学得很差,勉强通过。但在月考时,我只考了五十几分,不及格,挨了老师一顿臭骂。我同寝室中有一位和我邻铺位的同学,人家都叫他郑老总,却考了七十几分,受到表扬(那时考上七十几分多不容易)。我心里不服,认为我比他聪明,至少人家没有叫我老总,认为他只不过偶然碰上罢了。当时有好几位同学来向郑老总请教,他回答得头头是道。

我不禁暗中钦佩,便问他是怎么会的。他告诉我,每天当我们吃完中饭去睡觉时,他却到教室里做习题。他的话给了我很大的启发。从那天谈话后,我每天吃完中饭,便不再睡午觉,赶到教室里做习题。不久我也取得了良好的成绩,开始了我的数学生涯。

学习数学要循序渐进。我不是一个循规蹈矩做学问的人,稍有所得,便好高骛远,希望一步登天。我总是力图学一些比课堂上更深更难的东西。

比如说,当老师在教复数和二次方程时,我却拼命地去做方程式论(范式代数)一章的习题。由于是自学,对课文是一知半解,等到老师教授方程式论一章时,由于大部分内容我已熟悉,便无心听课,自己不清楚的地方也无心仔细钻研,成天感兴趣的则是微积分和微分方程,其结果,所学的大部分是“夹生饭”,到时都得回锅,事倍功半。虽然我从朋友们的工作中逐渐认识到循序渐进是很好的学习方式,但毕竟已浪费了不少时间。

而且,那种好高骛远,见异思迁的习惯已难根除。

所谓循序渐进,就是说,当第一步尚未学得很透彻,甚至还是似懂非懂的时候,不要进入第二步。数学这门学科,逻辑性很强,后面的部分往往要用到前面的知识,或处理问题的方法。有时虽然没有直接用到定理或方法,但却需要某种训练,缺少这些知识、方法和训练,越往下走,便会感到越来越糊涂。写出来的东西,似是而非,以直观代替严格的数学推理,谬误百出。

在学习上,由于遇到的东西越来越复杂,便会感到乱成一片,不知道文章里的问题是如何解决的,甚至连讲些什么也不清楚。这样就会越来越感到学不下去,从而丧失了兴趣。假若养成一种循序渐进的习惯,便会将学习的东西整理得一清二楚。一个复杂的证明,哪些部分是作者独创的,哪些是“高着”,估计自己是作不出来的。从这当中便发现了自己与作者之间的差距。

学习的目的就是要去解决问题。

对于学习来说,循序渐进很有必要,可以避免夹生饭。但是,光是循序渐进是不够的。一本书或一篇文章,它总是按着某种逻辑次序来写。按其所包含的内容,依照相互牵连的关系,把内容安排成某种次序,使前面所讲的东西不会用到后面所讲的,这叫做顺理成章,不然就乱了套。不可能设想,一本中学教本把二次方程放在一次方程的前面来讲。因为在解二次方程时要用到一次方程方面的知识。一本像样的书总是按照循序渐进的精神来写的。

我们读一本书,目的是要学得一些有用的知识。也就是说,这些知识将来可能在某种场合用到。需用时,我们既知道有这些东西存在,不必临时现学。这这里讲的知识,可以是某一定理或结论,可以是某些处理问题的技巧,也可以是它们的某种复体。要使我们的工作能顺利进行,而不是到处碰壁,就要求我们能够熟练地掌握这些知识。在使用时,有的是信手拈来,有的须要加以改造,有的则须要进行某种创造。

而要做到这一点,教师和学生都要对自己有较高的要求。

学习的目的就是用。要运用已学到的东西去创出精神的或物质的财富。那种只问耕耘、不问收获的思想不能被认为是一种好的思想,对人民负责的思想。“用”是针对某种目标而言。有了目标,对于学习的内容就有所选择,不会漫无边际。用时,也知道应学到什么程度为止,也可衡量出对于已学过的东西是否真正了解,融会贯通,也知道哪些知识对自己的目的来说是需要掌握的。

这时,你也会感到,有些知识虽然已经很熟悉,甚至可以背诵如流,但并没有真正掌握,因为不会使用,这时重新学习,体会便和以前大有不同。

在这里就出现了一个如何寻找“目标”的问题。对于从事实际工作的同志来说,目标往往来自当时所从事的实际课题。例如一个设计人员,在设计某一工程时,假若他希望有所创造,就应该去了解当前国际上该方面的最新方法和最新成就,然后根据我国的具体条件,经过认真分析,提出应兴应革的意见。

对于一个搞理论工作的同志来说,事情就比较复杂一些。理论课题的要求不像实际问题那么具体,自由度大一些。如何选择一个适当的课题,即使对于有经验的人来说,也不是那么容易的。在这方面,虽然不乏自学成才之士,但若能得到良师益友之助,则可少走一些弯路。

最后,我想谈一谈“基础”问题。这这里所说的基础,是指从事一门学问所必须具备的知识和训练。缺乏必要的知识便不知道别人讲的是什么,不理解问题和结论的含义。

缺乏必要的训练,则会感到处处是困难,寸步难行。因此,一定的基础是必要的。但基础只是相对于某种科目而言。研究代数的人,对数学分析的要求便不同于研究微分方程的人。而一个人常常会依据客观的需要或学科的发展而改变自己的观点和选题,这时,原有的基础便不能适应新的需要,要重新学习。即使老是在同一学科里工作,但随着学科的发展和自己工作范围的扩大,也需要学习新的基础性的东西。因此,基础是一个无底洞。

虽然一定的基础是必要的,但不能等到把一切都准备好了再开始工作,只能在工作中通过边干边学,扩大和加深自己的基础知识。

对于培养基本训练来谈,重要的是多作些不同类型的题,做到脑子活、思路宽。一个优秀的作家总是具有宽广多变的思路。莎士比亚便是一个很好的例子,他的三十七部剧本在题材和处理手法方面,各有其特色。《水浒传》里的那些主要人物也各有其独特的面貌。

但一个拙劣的作者在处理题材时,则往往千篇一律,大同小异,使人一见便知出自谁手。这样的人来搞数学,在最好的情况下,也不过是个程咬金,就是那么三板斧。遇到问题,凑巧他那一手可以驾驭,算碰上了一回;若对不上号,便无所施其计。程咬金的缺点,不是他无能,因为他也有三板斧,而在于他因循守旧,满足现状,不愿学习新事物,也不想学习别人的长处。

在上面,我拉杂写了一些自己在学习数学的过程中的一些体会。谈了这些,并不意味着我已经学好了;相反,我却具备了上面提到的各种缺点,将自己的缺点与别人的优点相比,感受颇多,所写的实际上是一些感受。另一方面,对于学习,各人有各人的体会,这当中自然带有不少偏见和局限性,请读者见谅。

UUID: 979d9876-4d5e-4be5-85ff-9c9a21c4ffbe

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2024/返朴_2024-06-26_数学家谈怎样学数学.txt

是否为广告: 否

处理费用: 0.0221 元