2021年意大利物理学家乔治·帕里西(Giorgio Parisi)获得诺贝尔物理学奖,表彰他对复杂系统理论的开创性贡献,“发现从原子到行星尺度的物理系统的无序和涨落的相互影响”。1979年,帕里西巧妙地利用复本技巧解决了自旋玻璃问题,后来在数学上被证明,从此成为复杂系统理论的基石。物理学家在实验室内对各种无序体系进行探索,但帕里西不止如此。
他来到户外,仰望天空:无数椋鸟在有节奏的飞舞,就像在一个乐队指挥下——这样复杂的集体行为,它们是如何做到的?德国物理学家库尔特·西曼齐克(Kurt Symanzik)曾形容帕里西“太狂野了”,是的,帕里西要与椋鸟齐飞。
相互作用是一个重要的问题,也能用来理解心理、社会和经济现象。我们尤为关注的是鸟群中的每个成员如何能够相互沟通,从而协同一致地飞行,构成一个既表现出集体行为又具有多重结构的群体。
观察动物的集体行为是一件很美妙的事,无论是天上的鸟阵、水中的鱼群,还是成群的哺乳动物。夕阳西下,我们看到成群结队的鸟形成了魔幻的景象,成千上万个舞动的小墨点在五彩缤纷的天空中格外显眼。只见它们一起飞来飞去,既不会撞到一起,也不会各自散开,它们飞越障碍,时而疏散,时而聚拢,不断变化着空间的排列,就好像有个乐队指挥在对它们下达指令。
我们会良久地注视着这些鸟,因为眼前总是呈现新的景象,千变万化,出乎意料。有时候,即便面对这种纯粹之美,科学家也同样会犯职业病,于是许多问题就拍着翅膀飞进了他的脑袋。这到底是有乐队指挥还是它们自己组织的集体行为?信息是如何在整个鸟群中迅速传播的?它们的阵型怎么能如此快速地改变呢?这些鸟的速度和加速度是如何分配的?它们怎么能一起转向而又相互碰撞?
难道椋鸟之间那些简单的互动规则就能让它们做出复杂多变的集体运动,就像我们在罗马的天空中观察到的那样?
要解释一个问题,我们必须先充分认识它。这样说来,一开始我们缺少一个关键信息:我们必须弄清鸟群是如何在空中运动的,但当时这个信息无从获得。事实上,那时候我们掌握的大量鸟群视频和照片(网上也很容易找到)都是从单一视角拍摄的,完全没有三维信息。
某种程度上,我们就像柏拉图洞穴神话中的囚徒,只看得到投射在洞壁上的二维阴影,无法把握物体的三维属性。恰恰是这个难题成为激发我研究兴趣的另一份动力:对鸟群运动的研究应是一个完整的课题。它包括实验设计、数据的收集与分析、用于模拟的计算机代码的开发、解读实验结果以得出最终结论。
大家知道,我一直从事统计物理学的研究,这一学科的研究方法对于椋鸟飞行轨迹的三维重建是必不可少的,但这项工作真正吸引我的是参与实验设计和实施环节。我们搞理论物理学的人通常都远离实验室,只与抽象的概念打交道。解决实际问题意味着要掌控许多变量,具体说来,就是从摄影镜头的分辨率到摄像机的最佳拍摄位置,从数据存储量到分析技术,每一个细节都决定着实验的成败。纸上谈兵的人根本不会意识到在战场上会遇到多少问题。
我从不喜欢远离实验室的研究。
显然,我们不仅需要拍出3D电影,从技术角度来看这是一个非常费工夫的活儿,还必须重建三维位置。有了电影院里的3D电影,这件事就好办多了:我们每只眼睛看到的是由一台设备拍摄的东西,然后我们这个经过数百万年进化而来的大脑就完全能够生成三维视图,将我们在空间中所见物体的位置确定下来。我们在计算机上使用算法时面临类似的任务,这是挑战的第二部分。
我们深化了统计分析、概率和复杂数学算法的全部技能。一连好几个个月,我们都在担心不能成功,因为有时你攻克了一个太难的问题,然后又会无功而返(事先不可能知道)。幸运的是,经过艰苦的工作,发明了必要的数学工具,我们找到了一个接一个解决难题的策略,在拍出第一张高质量照片的一年后,终于得到了第一张三维重建图像。