量子力学导致基因突变?科学家们掌握了一些证据

作者: 七君

来源: 把科学带回家

发布日期: 2020-12-17

近年来,科学家们发现量子力学在生物过程中的重要作用,尤其是在解释光合作用效率和 DNA 突变方面。量子相干性和量子隧穿等量子现象被认为可能影响生物体的生化反应和基因突变,尽管这一理论在学术界仍有争议。

癌症令人闻之色变,而量子力学又是大热的研究领域,把癌症和量子力学结合在一起,很容易让人产生夸大其词、哗众取宠的联想。但是一些学者却指出,量子力学可能是 DNA 发生突变,导致复制错误的物理原理,他们还得到了一些证据。21世纪的化学家们大都同意,量子力学在化学中具有核心位置。比如,量子相干和量子纠缠决定了共价键的形式。而化学又是生化过程的基础,因此不难想象,量子力学也是生化反应的根基。

但是,随着分子越来越大,量子相干就变得难以维持,所以大多数生化过程并不需要用物理学来解释,而只要用经典的球棍模型就可以了。在20年前,想要用量子力学来解释生物过程,不管是在物理学界还是在生物学界都会遭到耻笑。当时的大多数学者认为,量子力学在微观上有用,在宏观世界,比如生物世界的作用是微不足道的。

可是近20年来,研究者们发现了量子力学在某些生物过程中的重要作用,尤其是解决了生物学的一个大难题——光合作用的效率。在光合作用中,能吸收光子的光敏分子,如叶绿素叫做发色团。发色团吸收特定波长的光子,其中一小部分光子的能量被转化为热量,也就是分子的振动,而大部分则变成了激子,也就是一种类似于粒子的能量包。激子这种能量包要被传导到一个集中处理站——光合反应中心,才能被用于生命活动。

可是,发色团聚集成了一个类似于太阳能板的阵列——天线色素,而某个发色团产生的激子要到达光合反应中心,需要穿越其他发色团。传统生物理论认为,激子在发色团之间的传递像是随机乱传的击鼓传花,从一个发色团传给另一个,直到最后到达光合反应中心。这个过程叫做 Förster 耦合。可是问题来了,激子要经历成百上千的发色团才能到达目的地,而每转手一次,就会损失一次能量。

也就是说,走的冤枉路越多,光合作用的效率就越低。如果光合作用的能量传输过程真的如此,那么它的理论效率就只有50%。但是,光合作用的效率是95%,超过人类已知的其他能量转化效率,而且发生十分迅速,这是传统理论无法解释的矛盾。

加州大学伯克利分校劳伦斯伯克利国家实验室的物理学家 Graham Fleming 如此驳斥传统模型:“经典的跳跃模型不正确也不充分,它对真实过程的描述是错误的,而且缺失了对光合作用无与伦比的效率的解释。”可是长久以来,大家认为这个过程中没有量子力学什么事儿。但是在2007年,这种看法被打破了。

Fleming 的团队利用能进行光合作用的绿硫细菌 Chlorobium tepidium 发现,激子的传递过程实际上利用的是量子相干性。原来,激子具有波粒二象性,它类似于一个向四面八方传播的涟漪,可以同时探索池塘内,也就是天线色素中的各种通道,找到到达光合反应中心最有效的一条途径。在量子理论中,激子可以同时计算各种路径,找到到达光合反应中心最有效的那一条。

Fleming 解释:“量子相干性在光合作用的能量传递过程中起到了很大的作用,揭示了能量传输的效率。(激子)可以同时搜索所有的能量传输通道,找到其中最有效率的那条。”2010年,多伦多大学的化学研究者 Gregory Scholes 和同事发现,海洋中隐藻门藻类也具有类似的量子相干性。就这样在短短的20年里,量子生物学名词被创造了出来,并成了一个欣欣向荣的学科分支。

研究者们也发现了越来越多的传统理论无法解释,但可由量子力学解释的生物现象,比如酶的催化效率、嗅觉的机制、鸟类对地球磁场的感受。其中,量子力学能解释的一个重要问题,就是 DNA 突变。DNA 的双螺旋结构类似于一个旋转上升的梯子,梯子的每个“台阶”实际上是氢键。氢键其实就是连接左右两个碱基的一个质子,而这个质子通常略微更靠近台阶的某一边。

1963年,诺贝尔物理学奖委员会成员、瑞典物理学家佩尔-奥洛夫·勒夫丁在发表在 Reviews of Modern Physics 上的一篇文章中提出一种理论设想:在 DNA 复制的过程中,氢键上的质子可能处于某些量子态之中,如果这个质子靠近“台阶”错误的一边,那么 DNA 就会发生变异,而质子的这种错误可由量子隧穿实现。具体来说,在 DNA 复制时,碱基之间的氢键断裂,可以和新的核苷酸组合。

正常情况下,碱基 A(腺嘌呤)和 T(胸腺嘧啶)结合,C(胞嘧啶)和 G(鸟嘌呤)结合。但是,核苷酸可能因为质子隧穿而发生改变,A 就会变成 A*,T 变成 T*。让勒夫丁感到担忧的质子的这种乱来就叫做互变异构化。别看只是头上戴了朵花,整个碱基的气质都会发生变化。和 A 不同,A* 不愿意和正经对象 T 结合,而更容易和 G 的对象 C 结合。

而 T* 也看不上 A,更容易和 G 结合,整一个大乱炖,这就会导致突变。勒夫丁的这种设想有没有道理呢?30年后出现了一些间接证据。在过去,生物学家接受的普遍教育是,突变应该是随机发生的,因此各种突变的发生概率应该差不多,正如理查德·道金斯在著作《盲眼钟表匠》中提出的那样,evolution is blind(演化是盲目的)。

可是在1988年,哈佛大学的生物学家 John Cairns 和同事发现了一个不符合传统进化论的奇特现象:大肠杆菌可以迅速获得有利突变。他们将无法消化乳糖的大肠杆菌放在只有乳糖的培养皿里。结果,这些大肠杆菌出现了能够消化乳糖的突变,而这个突变的发生速度远超理论预期,也就是突变随机发生的情况。他们的这一研究发表在 Nature 上。

为了解释大肠杆菌的这种奇怪突变,英国萨里大学的生物学家 Johnjoe McFadden 想到,这或许和量子力学有关。于是,他开始向该校物理系的学者们求助。Al-Khalili 对 McFadden 的看法很感兴趣,就这样,两人开始搭伙研究。

利用勒夫丁的理论,Al-Khalili 和 McFadden 提出,实际上在观测之前,DNA 氢键上的质子处于叠加态中,也就是说它并没有确定自己会倒向突变的那一边,还是没有突变的那一边。以不会吃乳糖的大肠杆菌为例。在遇到乳糖前,大肠杆菌处于既有可能消化乳糖,也有可能无法消化乳糖的叠加态。

Al-Khalili 和 McFadden 继而通过计算指出,乳糖分子的存在使质子的状态向能够消化乳糖的方向塌缩,这就解释了为什么大肠杆菌的变异速度超过经典理论的预期。在这些研究的鼓舞下,一些雄心勃勃的研究者认为,在攻克癌症方面量子力学将是一个突破口。2013年,慕尼黑大学的化学家 Frank Trixler 甚至提出,DNA 的氢键上发生的质子隧穿现象正是物种演化的起源。

不过,关于量子世界是否支配一些基本的生物过程,学术界还有相当大的争议。量子生物学需要更多的证据才能支撑这些大而美的假说。在谜底揭晓前,让我们暂时享受这叠加着期待和怀疑的奇妙等待吧。

UUID: 742a328f-7034-4589-bb5c-2a2e57d73d50

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/把科学带回家公众号-pdf2txt/2019-2020/2020-12-17_量子力学导致基因突变?科学家们掌握了一些证据.txt

是否为广告: 否

处理费用: 0.0070 元