中国研究团队在量子计算领域实现了重要进展。在一项发表于《科学》杂志的最新研究中,中国科学技术大学的潘建伟和陆朝阳团队与中科院上海微系统所、国家并行计算机工程技术研究中心合作,展示了用他们名为“九章”的量子计算机运行高斯玻色采样的技术。他们用九章探测到76个光子——远远超出先前5个光子的记录。九章也表现出了远超经典超级计算机的能力,实现了量子优越性(或称量子霸权)。
与由硅处理器构建的经典计算机不同,九章是一个布置了激光、镜子、棱镜和光子探测器的精密桌面。它并不是一个可以发送电子邮件和存储文件的通用计算机,但它的确证明了量子计算的潜力。去年,谷歌的量子计算机“悬铃木”(Sycamore)用3分钟解决了需要超级计算机运行3天(或者1万年,取决于估计方法)才能解决的问题,登上了新闻头条。
这篇论文中,中科大团队估计:要完成九章用200秒完成的特定任务,世界第三超算神威太湖之光需要花费惊人的25亿年。
这只是对量子优越性(quantum primacy)的第二次证明。量子优越性描述的是这样一个时间点:量子计算机以指数速度超过任何经典计算机,高效地完成经典计算机不可能实现的计算任务。这不仅是这一原理的证明,还暗示高斯玻色采样可能存在一些实际用途,例如解决量子化学和数学中的特殊问题。更广泛地说,这种控制光子作为量子比特的能力,是任何大型量子网络的先决条件。
过去几年,量子计算已经从朦胧的概念上升到数十亿美元的产业,因其对国家安全、全球经济以及物理和计算科学基础的潜在影响而被认可。2019年,美国通过了《国家量子倡议法案》(National Quantum Initiative Act),在未来10年内计划向量子技术投资超过12亿美元。这一领域也遭到了相当多的炒作,如不切实际的时间表,还有诸如“量子计算机让经典计算机完全过时”的夸张说法。
中科大团队对量子计算机潜力的最新证明至关重要,它和谷歌的方法大相径庭。悬铃木用金属超导体回路形成量子比特;而在九章中,光子本身就是量子比特。这是量子计算原理可以在完全不同的硬件上实现优越性的独立检验。陆朝阳说:“这让我们相信,从长远来看,最终实用的量子模拟器和容错的量子计算机将会变得可行。”
玻色采样的装置类似于名为高尔顿板的玩具——是一个用透明玻璃覆盖的钉板。球从顶部掉落到一行行钉阵中。在球下落的过程中,它们从钉子上弹起,直到落入底部的槽中。对于经典计算机来说,模拟槽中球的分布相对容易。玻色采样用的不是球,而是光子,它用镜子和棱镜替代了钉子。激光中的光子在镜子上反弹,穿过棱镜,直到它们落入“槽”中被检测到。不像经典的球,光子的量子性让它分布的可能情况数以指数级增长。
很难估计经典超级计算机解决76个光子的分布问题要花多长时间——很大程度上是因为花25亿年运行超级计算机来直接检验它是不可行的。不过,研究人员可以根据经典计算机计算较少量的光子时所花的时间进行推测。研究人员称,最好的情况下,解决50个光子的问题要花费超级计算机两天时间,这比九章200秒的运行时间要慢得多。
量子计算经历了众多曲折,但仍在向前发展。陆朝阳说,超越经典计算机并不是一蹴而就的事,而是一场持续的竞赛,需要看传统算法和计算机能否追上,或是量子计算机是否能保持它的领先地位。事物是在持续发展的。10月末,加拿大量子计算初创公司Xanadu的研究人员发现了一种算法,该算法以二次方缩短了经典模拟所用的时间。换句话说,如果之前检测到50个光子就能实现量子优越性,那么现在你需要100个。