什么是机器学习?

作者: Chris Budd

来源: https://plus.maths.org/content/what-machine-learning

发布日期: 2019-01-10

机器学习是人工智能的一个重要分支,它允许机器从数据中学习并执行复杂的任务。通过识别模式和使用复杂的算法,如神经网络和卷积神经网络,机器学习在图像识别、医学诊断等领域取得了显著进展。

机器学习是人工智能在近期最重要的发展之一。机器学习的理念是,不将智能看作是给机器传授东西,而是机器会自己学习东西。这样一来,机器就可以直接从经验(或数据)中学习如何处理复杂的任务。即使是相对简单的机器学习算法也可以学习如何区分猫和狗的图片。随着计算速度和用于编程的算法的巨大进步与发展,机器学习成长迅速。由此产生的算法对我们的生活开始产生重大影响,而且它们的表现往往胜过人类。

那么,机器学习是如何工作的呢?

在机器学习系统中,计算机通常是通过在相同任务的大型数据库中进行训练,然后自己编写代码去执行一项任务。其中很大一部分涉及到识别这些任务中的模式,然后根据这些模式做出决策。举个例子,假设一家公司正要招聘一名新员工,在招聘广告登出之后有1000个人申请,每个人都投了简历。如果要亲自一个个筛选,这实在太多了,所以你想训练一台机器来完成这项任务。

为了更清楚地理解机器学习的过程,我们将以开发能够识别手写数字的机器为具体例子来考虑模式识别的问题。这样的机器应该能够准确识别一个字符所代表的数字,而无论它的书写格式如何变化。数字识别的过程分为两个阶段。首先,我们必须能够将手写数字的图像扫描到机器中,并从这张(数字)图像中提取出有意义的数据。

这通常是通过主成分分析(PCA)的统计方法实现的,这种方法会自动提取图像中的主要特征,例如图像的长度、宽度、线条的交点等。

简单的感知机可以被训练来完成许多简单的任务,但很快就会达到极限。显然,将许多感知机耦合在一起就可以进行更多的计算,但这一发展必须等待更强大的计算机的出现。当多层感知机耦合起来形成一个神经网络时,这一重大突破就出现了。

这种神经网络的典型结构如下图所示,它包括输入层、隐藏层和输出层。在这种情况下,输入会组合起来以触发感知机的第一层神经元,由此产生的输出也会组合起来以触发下一层神经元,最后,这些组合起来给出最终的输出。

神经网络学习的过程有多种形式。在监督学习中,用户会事先提供一组成对的实例,也就是输入和输出。然后,学习的目标是找到一个给出的输出能与实例匹配的神经网络。通常,用来比较神经网络的输出与实例的输出的方法是计算两者的均方误差;然后对网络进行训练,让这一误差对所有训练数据集最小化。

近年来,机器学习的数学算法有了很大的发展。

卷积神经网络(CNNs)就是一种令人兴奋的、重要的新发展,它是对那些将图像处理技术与深度神经网络结合的方法的扩展,可以应用于人脸识别,甚至可以用来检测情绪,现在还被用于包括医学诊断在内的许多其他领域。为了更好地学习下国际象棋,AlphaZero使用了深度卷积神经网络。它的训练是通过强化学习的方法,让机器在24小时内与自己对弈70万局。过程中采用一种通用的蒙特卡罗树搜索(MCTS)算法来分配加权。

在学习下围棋和日本将棋时采用的也是类似的方法,而且在每种情况下都达到了相似的水平。这是非常了不起的!

UUID: 13b48aa4-c491-4ef0-a8a5-e86a5d93ef44

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/原理公众号-pdf2txt/2019年/2019-01-10_什么是机器学习?.txt

是否为广告: 否

处理费用: 0.0046 元