本着服务于中国物理学者和物理专业研究生的宗旨,我们根据PRL摘要和引言对本期所有文章进行中文导读。由于水平有限,不免出现一些不准确的地方乃至错译的地方。公众号下方有留言功能,欢迎专家学者通过留言指出不准确或错译的地方,共同提高公众号的服务质量。留言经编辑确认后,会显示在文章下方,供后来浏览者参考。
无限维度中观测量客观性的涌现
量子达尔文主义假定当多个观察者通过测量环境的一部分来间接探测一个量子系统时,信息就会变得客观。最近的研究表明,当感兴趣的系统维数有限并且环境碎片的数量很大时,观测量的客观性一般都会从量子力学的数学结构中涌现出来。尽管这个结果很重要,但它必然排除了许多具有无限维度的实际系统,包括谐振子。将量子达尔文主义的研究扩展到无限维度是一项非平庸的任务。
Knott等人在这里使用一种修正的diamond范数来解决这个问题,它适用于量化无限维度中通道的可分辨性。作者证明了两个定理,这两个定理限制了客观性的出现,首先是有限的平均能量系统,然后是那些只能在指数能量截断状态下制备的系统。他们证明了后一类包括单模高斯态的任何有界能量子集。
相干信息的Dephrasure通道和超加性量子通道的量子容量体现了它对无噪声量子通信的能力,它是量子信息论的核心。
不幸的是,我们对相干信息非加和性的理解不足,使得我们很难理解除了非常特殊通道之外的所有通道的量子容量。在这篇文章中,Leditzky等人考虑了dephrasure通道,它是退相位通道和擦除通道的串联。这个非常简单的通道显示非常丰富而奇异的性质。
作者发现了在两字母级的非加和性的相干信息,零量子容量和零单字母的相干信息的阈值之间有很大的差距,单字母相干信息和私人信息有巨大的差距,所有互补通道的正量子容量。其简洁的形式大大简化了相干信息的评估,因此作者等人希望dephrasure通道能够为测试关于非加性的新想法提供一个急需的实验室。
阱内离子双径模中九声子NOON态
通过与内态耦合,Junhua Zhang等人发展了一种确定性方法来产生和验证任意高声子的NOON态(多体纠缠态)。他们在实验上制备了单个受陷Yb离子双振模中9声子纠缠态,观察到NOON态的相位灵敏度随着声子数目的增加而增加,通过双模投影测量,从相位干涉和声子态布居数对比中得到保真度——远高于经典限制。他们还测量了这些态的量子Fisher信息,并观察到,随着N增加,在低相位灵敏度时的海森堡标度。
他们的方案是通用的,并且可以应用到其它声子或者声子系统,诸如线路QED或者纳米谐振子这些Jaynes-Cummings型相互作用系统。
布朗非对称简单排除过程Lips等人研究了与热能相比具有较大振幅的一维余弦势中硬杆的受驱布朗运动。在封闭体系中,他们发现了稳态流依赖于粒子密度的惊人特征。流-密度关系的形式随粒子大小变化很大,并且可以表现出局部最大值和最小值。
这种变化是由屏障减少、阻挡和交换对称效应的相互作用引起的。后者导致流等于大小与余弦电位的周期长度公度的无相互作用粒子的流。对于与粒子源耦合的开放系统,他们预言了5个不同的非平衡稳态相。结果表明,粒子大小在驱动系统中的非平衡相变中起着至关重要的作用。作者还指出了他们研究结论可能的实验验证。
开放量子系统不可逆性的几何限制
克劳修斯不等式对可逆性和时间之矢有深远的影响。量子理论可以通过检查密度矩阵在其流形上的轨迹将此结果拓展到封闭系统。在这里,Mancino等人表明这种方法也可以给出开放量子系统中不可逆熵产生的上限和下限。这些研究告诉我们,初始状态的信息是怎样通过热化过程遗忘的。他们在量子光子模拟器中讨论并证明了边界的适用性限制。
可积系统中的流体动力学扩散
De Nardis等人的研究表明流体动力学扩散通常存在于多体、一维相互作用的量子和经典可积模型中。作者将最近发展的广义流体动力学(GHD)扩展为包括Navier-Stokes类型项,这导致了正熵产生和扩散驰豫的机制。这些项提供了对可积系统的大规模非平衡动力学的欧拉尺度GHD和由于双体散射而产生在准粒子之间引起的分散扩散修正。作者给出了扩散系数的精确表达式。
他们的结果适用于一大类可积系统,囊括了量子和经典,伽利略和相对论场论,一维的气体和一维链,例如描述冷原子气体的Lieb-Liniger模型以及Heisenberg量子自旋链。