仿生设计:沟通生物与新材料的桥梁

作者: 谢歆雯、黄立志、陈松月、侯旭

来源: 《张江科技评论》

发布日期: 2017-10-27

本文探讨了仿生设计在材料科学中的应用,介绍了仿生材料学的概念及其在多个领域的研究热点,如仿生定向输运材料、仿生超疏水材料等,并展望了仿生材料在未来的广泛应用前景。

科技的进步正带来材料的新革命。自然界为新材料的研发带来了很多设计灵感,效仿仅仅是第一步,仿生材料从实验阶段进入实际应用更为重要的一步是超越自然。仿生这一思想早已出现并应用于人类的生产生活,例如骨针(模仿鱼刺)、锯子(模仿带齿草叶)、车轮(模仿蓬草的飞转状态)等。经过长期的演化和自然选择,生物系统通过优化其组织结构及界面性质等方法,最终进化出了能够响应外界刺激、适应环境变化的优异性能。

现代化表征及制备合成技术的高速发展推动了人类对这些优异生物特性的深入认知,得益于此,自然宏观现象背后的微观作用机制为新材料的研发带来了更多的设计灵感。

仿生学在材料科学中的分支称为仿生材料学,仿生材料学受生物结构和功能的启发,通过研究生物体宏观、微观多尺度结构与其特性之间的相关性,设计合成具有该特性的物质和结构,最终得到具备特定功能的新材料。自然界的生物体给人类带来了无尽的设计灵感,其中包括了仿生材料领域的诸多研究热点,例如仿生定向输运材料、仿生超疏水材料、仿生高黏附材料、仿生轻质高强度材料、仿生智能薄膜材料等。

仿生定向输运材料某些生物体,如仙人掌、蜘蛛、纳米布甲虫,可在干旱的环境中生存。研究发现,这些生物体具备从稀薄的空气中收集水的特殊本领,深入探究这些生物的集水方式,将为全球范围的缺水问题带来潜在的解决方案。生活在墨西哥奇瓦瓦沙漠的一种黄毛仙人掌,它的掌刺尖端长有取向倒钩,该结构确保液滴只能向尖端根部运动。

仙人掌中部的梯度凹槽是一种不对称结构,该不对称结构产生的表面张力梯度使得液滴能够沿着掌刺运动到达尖端根部,而掌刺底部呈带状分布的绒毛能够很好地收集水分。模仿仙人掌掌刺微观结构的集水机制,可以获得更大的集水表面,从而使材料的集水能力大大提高。

人们在观察蜘蛛丝时发现蜘蛛丝本身是疏水的,蜘蛛丝表面周期性地分布有纺锤状结点。

结点两侧拉普拉斯压力的不同会产生压力差,使得水滴不断在蜘蛛丝上聚集,并向结点移动。模仿蜘蛛丝的结构,用聚偏二氟乙烯纺锤结制备的仿蜘蛛丝纤维材料,以纺锤结作为冷凝点和收集点,可以收集较大的水滴,并将其运送到指定位置,具有很强的集水能力。非洲纳米布沙漠中有一种甲虫,其翅膀上有一种超亲水纹理和超疏水凹槽,可从风中吸取水蒸气。当亲水区的水珠越聚越多时,这些水珠就会沿着甲虫的弓形后背滚入其嘴中。

受该甲虫的启发,人们构建了大量的亲水疏水图案化表面,以此实现集水功能的应用。

融合了材料科学、物理化学、工程学、生物学等诸多学科的新型多功能仿生材料,由于其性能独特、应用前景广阔,正引起越来越多的关注。除了上述介绍的具有代表性的仿生材料以外,还有许多其他仿生材料也在迅速发展。

例如,模仿飞蛾眼睛结构,制备防反光材料;模仿蜂巢结构,制备隔热材料;模仿蜘蛛丝或蚕丝结构,进而制备人造纤维;模仿电鳗及萤火虫等生物体内的发光机制,制备能量转换和能量储存材料等。自然界带给我们无限的材料学、物理化学等多学科的研究灵感,这些灵感不仅能够启发我们更好地设计制备新材料,还能将其应用于开发微/纳米智能器件,如发展仿生微流控技术以及仿生纳米孔道系统的研究。

这些新兴的研究方向和方法将促进生物技术、食品工业、膜科学以及传感器等领域的突破性发展,为环境、能源、生物医学等应用领域提供有利的工具,带来新的机遇。效仿自然仅仅是第一步,仿生材料从实验阶段进入实际应用领域最终实现超越自然,这是我们科研工作者努力奋斗的目标。相信未来的10年中,仿生智能材料将会在传感器、药物缓释、微流控、4D打印、水处理等诸多领域发挥至关重要的推动作用。

UUID: c0b509fc-1e9a-4b6c-8ff3-1af01f51f9e4

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2017年/2017-10-27_仿生设计:沟通生物与新材料的桥梁.txt

是否为广告: 否

处理费用: 0.0059 元