5个没人能解决的“简单”数学问题

作者: Avery Thompson

来源: 环球科学

发布日期: 2016-11-17

本文介绍了五个看似简单但至今未被解决的数学问题,包括Collatz猜想、移动沙发问题、完美立方体问题、内接正方形问题和美好结局问题。这些问题虽然易于理解,但数学家们尚未找到解决方案。

数学有时候会变得特别复杂,然而幸好不是所有的数学问题都晦涩难懂。这篇文章将会向大家介绍数学领域中五个有趣的问题,问题本身简单易懂,但迄今仍未被数学家们解决。

1. Collatz 猜想

随意选一个整数,如果它是偶数,那么将它除以2;如果它是奇数,那么将它乘以3再加1。对于得到的新的数,重复操作上面的运算过程。如果你一直操作下去,你每次都终将得到1。数学家们试验了数百万个数,至今还没发现哪怕一个不收敛到1的例子。然而问题在于,数学家们也没办法证明一定不存在一个特殊的数,在这一操作下最终不在1上收敛。

2. 移动沙发问题

你要搬新家了,想把你的沙发搬过去。问题是,走廊有个转角,你不得不在角落位置上给沙发转方向。如果这个沙发很小,那没什么问题。如果是个挺大的沙发,估计得卡在角落上。如果你是个数学家,你会问自己:能够在角落上转过来的最大的沙发有多大呢?这个沙发不一定得是矩形,可以说任何形状。这便是“移动沙发问题”的核心,具体来说就是:二维空间,走廊宽为1,转角90°,求能转过转角的最大二维面积是多少?

3. 完美立方体问题还记得勾股定理,A2 + B2 = C2 吗?A、B、C三个字母表示直角三角形的三边长。毕达哥拉斯三角形指的是三边长都是整数的直角三角形,即满足A2 + B2 = C2且A、B、C都是整数。现在我们将这个概念扩展到三维,在三维空间,我们需要四个数A、B、C和G。前三个数是立方体的三维边长,G是立方体的空间对角线长度。

正如有些三角形的三边都是整数一样,存在一些立方体的三边和体对角线(A、B、C和G)都是整数,但对于立方体来说还有三个面对角线(D、E和F),这就带来一个有趣的问题:有没有立方体满足这个7个边长都是整数的条件呢?

4. 内接正方形问题随手画一个闭合曲线,这个曲线不一定要是圆,可以是任何你想要的形状,但曲线的起终点必须重合且曲线不能穿越自身,在这个曲线上可能找到四个点连成一个正方形。

内接正方形假设的内容就是,每条闭合曲线(确切来说是每个平面内的简单闭合曲线)一定有一个内接正方形,这个正方形上四点都在这个闭合曲线上的某处。许多闭合曲线上内接其他形状的问题都已经得到了解决,例如矩形或者三角形等,但正方形却有点复杂,至今数学家们还没有搞明白这个问题的正式证明。

5. 美好结局问题

这个问题之所以被命名为“美好结局问题”,是因为它促成了一对数学家的美好姻缘:数学家George Szekeres和Esther Klein都曾致力于解决这一问题,他们最终结婚了。概括来说,这个问题是这样的:在一张纸面上随机放置5个点,假设这5个点排布不特殊(比如排在一条直线上),你总能找到其中四个点构成凸四边形,也即四个边夹角小于180°的四边形。

这个定理的要点在于,不管这5个点的位置排布如何,你总能在5个点中构造一个凸四边形。这是四边形的情况,而数学家发现,为了确保构造出一个凸五边形,似乎需要9个点;对于六边形则需要17个点,但此外更多边形的情况我们不清楚。构造七边形和更多变形需要多少点,依然是个谜。

UUID: f01d501b-47c9-4692-9724-c03bd066bc4f

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2016/2016-11-17_5个没人能解决的“简单”数学问题.txt

是否为广告: 否

处理费用: 0.0038 元