现实生活中许多情况都可以看作是在“博弈”,而达到纳什均衡在某种意义上对所有玩家都是积极的结果。本文首先条分缕析了纳什均衡在小游戏中的体现,又对其进行了扩展延伸探讨,更复杂的情况下,“看不见的手”究竟会如何影响你的决策呢?
生活中,我们常用剪刀-石头-布的猜拳游戏来决定谁去做清洁劳动等等,但是,你有没有注意到当你一轮一轮地进行游戏时到底发生了什么?起初,你可能处于上风,然而,你的对手可能会让游戏又转向对她有利的一面。随着游戏的进行,你们实施着各自的策略,直到最终所有玩家似乎都不能通过改善个人策略而获得更多的胜利。这是为什么呢?
其实,早在1950年,数学家约翰·纳什(John F. Nash Jr.)就向我们证明,在任何拥有有限参与者和有限策略的游戏(例如,剪刀-石头-布)中,总是存在这样的混合策略:使得在该策略下没有任何参与者可以通过仅改变自身策略而提高收益。后来,这种稳定的策略组合被人们称为“纳什均衡”。它不仅促进了传统的博弈论领域的革新,改变了经济学的进程,也改进了人们在政治条约、网络交通等诸多方面的研究分析方法。
而纳什也因此获得了1994年诺贝尔奖。
那么,纳什均衡在剪刀-石头-布的游戏中又是如何体现的呢?让我们模拟你(玩家A)和对手(玩家B)来简单分析一下。其中,玩家每轮胜出得一分,失败则丢掉一分,平局记零分。现在,假设玩家B首先采用一种(愚蠢的)战略,即每回合都出布。那么,经过几轮的游戏之后,你可能就会发现她的策略并采取每回合都出剪刀的策略来反击。我们将这种策略组合记为(剪刀,布)。
如果每一轮以这样的策略组合进行,毫无疑问你将取得胜利。但是,玩家B很快也会发现自己在这样的策略组合中的劣势。当她观察到你总是出剪刀应对时,她也转而采用总是选择石头的策略。这个策略组合(剪刀,石头)中B又开始赢得胜利。当然,你也可以继续针对新的策略组合而选择出布。
显然,这样的纯策略是不存在平衡点的。当然,你也可以尝试“混合”策略。假设你可以在每轮游戏中随机选择一种策略,而不是一直只选择一种策略。例如,你可以并不“总是选择石头”,而是“一半时间出石头,另一半时间出剪刀”,等等。纳什证明,当允许这样的混合策略时,每个这样的游戏将至少存在一个平衡点。
因此,我们可能更希望像经济激励方案、税务、条约以及网络设计这些“(博弈)游戏”终究达到纳什均衡。毕竟在这种均衡中,个人为了自己的利益行事,且最终得到满意的结果,并且系统也会很稳定。但是,在这些博弈之中,“玩家自然会达到纳什均衡”的这个假设是否合理呢?
想象一下这样一款新的游戏,其中玩家B在击败剪刀时获得三分,而在任何其他情况下获胜仅获得一分。
这将改变混合策略:玩家B将会更频繁地选择石头并希望玩家A选择剪刀从而获得三倍的得分。虽然积分差异不会直接影响玩家A的得分,但玩家B策略的变化将触发A的新的对策。并且如果玩家B的每一个回报都是不同且未知的,那么玩家A需要一些时间才能弄清楚玩家B的策略是什么。为了估计自己选择布的频率,玩家A需要通过很多回合来理解玩家B选择石头的策略。
进一步地,我们现在想象有100人玩剪刀-石头-布的游戏,每个人的得分情况都保密,每个都取决于他们击败对手的情况。那么,为了达到平衡点,你需要多长时间来计算你选择石头、布或剪刀的正确频率?可能是很长一段时间,也许比游戏还要长。甚至可能比宇宙的寿命更长!至少,即使是完全理性且深思熟虑的玩家,想制定好的策略按照自己的最佳收益行事并最终在比赛中达到平衡也并不容易。
这并不是说完全理性的玩家在比赛中从不倾向于达到均衡,实际上他们经常这样做。这只是意味着我们没有理由相信——游戏能实现纳什均衡是因为只由完全理性的玩家参与。当我们设计一个交通网络时,我们同样可能希望游戏中的玩家(即每个寻求最快回家路线的旅行者)能够共同达到一种平衡,使得即使各方采取不同的路线也不会获得任何额外收益。
我们可能希望约翰·纳什的“看不见的手”能够指导他们,以便他们在竞争合作中达到均衡,即采取尽可能短的路线,并避免造成交通拥堵。然而,上面逐渐复杂的剪刀-石头-布游戏已经向我们展示了为什么这样的希望可能会落空。因为这双"看不见的手"虽然会引导一些博弈,但是其他一些情况可能会抵制它的控制,终于玩家将陷入永无止境的竞争中,永远无法获得收益。