临界的鸟群与复杂系统——2021年诺奖得主Giorgio Parisi的集体行为研究

作者: 傅渥成

来源: 集智俱乐部

发布日期: 2021-10-17 08:42:48

2021年诺贝尔奖得主乔治·帕里西的研究揭示了复杂系统中无序和波动的相互作用,特别是他对鸟群集体行为的深入研究。帕里西通过观察和分析鸟群的飞行数据,发现鸟群在运动中表现出一种“团结紧张”的状态,这种状态类似于相变的临界点,既保持了群体的稳定性,又确保了个体信息的有效传递。此外,帕里西的研究还揭示了鸟群中个体之间的长程关联,这种关联性不仅限于近距离的鸟,而是可以影响整个群体。这一发现对于理解生物群体的集体智能和大脑的工作原理具有重要意义。

2021年诺贝尔奖颁发给乔治·帕里西 (Giorgio Parisi) 以表彰他对复杂系统理论的开创性贡献,特别是“发现了从原子到行星尺度的物理系统中无序和波动的相互作用”。除了原子和宇宙,帕里西还专门研究过鸟群的波动。故事源之于有一天他在罗马的火车站上空看到了成千上万只鸟儿成群结队地飞翔,鸟群没有统一的指挥却能如同一个整体自由变换形状,这一现象让他着迷。

帕里西于是派出了一组物理学家,他们拍摄记录了大量的鸟群飞行数据。基于此,他们用统计物理方法计算分析了数十万只鸟如何形成一个整体。

对一个鸟群而言,最智能的状态应该是某种“团结紧张”的状态。这种状态恰好处在“有序”与“无序”之间,类似于相变的临界点处,此时,一个群体既能保持其稳定性,又能保证个体的信息在群体中有效地传递。

最早尝试研究动物集体运动的人是日本的鱼类学家,他们早在六七十年代就提出了鱼类集体运动中的基本原则,然而因为太过于超前,他们又只用日语发文章,这些研究并没有得到重视。而到了八十年代,随着计算机科技的发展,动物集体运动的原则重新被计算机科学家 Reynolds 发现了,这一工作发表在计算机图形学的会议上。我们今天见到的许多动画、电影中的大场面,通常都是用类似的方法让计算机生成的。

在这篇文章中,Reynolds 总结了群体运动模拟的几个核心的要点:体积排斥、速度对齐、聚集倾向。

有了这些基本要点,我们就确定了集体运动中个体之间的相互作用,当许许多多的个体聚集在一起时,动物的群体就可以产生各种各样复杂的运动模式。我们已经知道,在鸟群中,相邻的鸟的速度会趋向于平行,但仅仅知道这些还不够,我们想知道这种相邻的鸟与鸟的相互作用究竟会在多大的范围内影响鸟群的运动。事实上,虽然每个鸟只受到附近较少的几个近邻的影响,但这种影响竟然可以遍及整个群体!

2021年诺贝尔奖得主 Parisi 曾经与 Cavagna 等人合作,对鸟群的运动进行了长期的观察,他们用两个摄像机拍摄同一个鸟群,从而重建出鸟运动的三维坐标,然后从这样一个 3D 的影片中算出来各个时刻,群体中的各只鸟分别处在怎样的位置,又根据相邻各帧画面,计算出鸟的速度,从这样的视频中我们可以得到很多有用的信息,这里我们介绍其中最有趣的“临界”特征。

一只鸟因为各种不确定性因素、外界刺激或者突发奇想,稍稍改变了它的运动方向,那么它的这种行为能影响到多大的范围呢?这里的“影响力范围”就是“关联长度”。分析关联,对于物理问题的分析非常重要,文小刚教授曾经在他的《量子多体理论》中提到:“我们可以测量的其实只是关联函数。我们不禁很想用关联函数来定义世界上的物理理论,关联函数可能就代表着我们世界的真实。”

怎样用关联函数描述鸟群中不同个体之间运动情况的关联呢?尽管整个鸟群在朝着某一个共同方向以平均速度 v 运动,但鸟群中的诸多个体可能自己的运动速度会与这个平均速度的方向或大小有所偏离。

我们可以计算鸟的速度偏差之间的关联,即考虑在鸟群中挑出距离为 r 的两只鸟(i, j),让它们各自真实的运动速度分别减去平均速度,得到相对速度,然后计算相对速度的内积,再然后,把所有这样的距离为 r 的鸟都选出来计算内积,这一内积的平均值即为 C(r)。

直观地看,关联函数可以理解成一种“影响力”,在一个鸟群中,平均地来看,较长的关联长度意味着各个鸟都有较大的影响力范围。如果鸟群在运动中没有达到临界,那么对于不同大小的鸟群而言,关联长度会更像是一个常数,这看起来是自然的,因为在描述集体运动的各类计算模型中,每个鸟的速度只与跟它们距离小于一定值的鸟的速度存在“相互作用”。

临界的特征对生物群体来说有着重要的意义,在草原上迁徙的羊群,天空中飞翔的鸟群,河流中洄游的鱼群都常常会遇到相似的问题,因为捕食者可能会从各个方向靠近来捕猎群体中的某些个体,甚至有的时候捕食者也会展开群体的攻势——这些情况就像自习的教室外有老师走过一样危险。

这时候,这些动物们会需要快速做出反应,于是我们看到鸟群在空中不断变换着形状,羊群突然聚集在一起,或者鱼群组合成一条看起来更大的鱼的样子,这种灵活应变的能力体现了生物的某种集体智能,这也是简单的有序或者无序态难以实现的。大脑的工作原理与鸟群也有相似之处。在大脑中,信息的有效整合需要有“长程关联”的存在。

近年来,随着各种实验技术的发展,我们可以用功能性核磁共振(fMRI)等实验直接测量大脑皮层中不同区域之间神经信号发放之间的关联,这种关联也是长程的,并且大脑皮层中距离距离较远的区域的放电情况还可能出现反关联,这些性质表明,大脑也是处在临界态的。这种特性帮助大脑始终保持在最佳的工作状态——稳定性与可塑性的最佳平衡。

幸运的是,我们的大脑在稳定性和可塑性之间达成了一种巧妙的平衡,我们的大脑恰好处在一个最具适应性的临界点上。

UUID: a2d9566c-70f9-4e67-b6d8-0eb456a89dbb

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2021/返朴_2021-10-17_「转」临界的鸟群与复杂系统——2021年诺奖得主Giorgio Parisi的集体行为研究.txt

是否为广告: 否

处理费用: 0.0068 元