那个午后的天才妙想,让《时代》周刊将他与伽利略相提并论

作者: 王善钦

发布日期: 2022-09-27 08:34:00

马丁·施密特(Maarten Schmidt)是一位杰出的天文学家,以确认类星体3C 273而闻名。他的研究揭示了宇宙的红移现象,改变了人类对宇宙的理解。施密特在其职业生涯中获得了众多荣誉,并被《时代》周刊与伽利略相提并论。

在50多年的学术生涯中,施密特凭借过人的才智、敏锐的直觉、超前的思维、浪漫的情怀与坚韧的意志,为人类探索宇宙做出了杰出的贡献,也获得了应有的荣誉。他是可以安息的。

2022年9月17日,杰出的天文学大师、天文领域的传奇人物马丁·施密特(Maarten Schmidt,1929-2022)逝世,享年92岁。

马丁·施密特于1929年12月28日出生于荷兰格罗宁根。

他的父亲威廉·施密特(Wilhelm Schmidt)是政府的一名会计,他的母亲安妮·威廉敏娜·施密特(Annie Wilhelmina Schmidt)是家庭主妇。施密特的伯伯或叔叔是一名药剂师与业余天文学家。在他的指导下,施密特用两块透镜与一个纸筒造出了一个望远镜。由于二战期间的灯火管制,他得以在城市的中心观测星空。他寻找并阅读所有能够找到的天文书籍。

1949年,施密特在格罗宁根大学获得学士学位,并在1年后获得硕士学位。然后,施密特进入荷兰的莱顿大学天文台(Leiden Observatory)跟随天文学大师简·奥尔特(Jan Hendrik Oort,1900-1992)攻读博士研究生。在博士研究生期间,施密特用了一年时间在肯尼亚(Kenya)观测恒星并测量它们的位置。

在完成这个任务后,施密特回到莱顿大学天文台,用射电望远镜系统观测银河系旋臂中的氢分子云发出的21厘米谱线,从而绘制银河系形态图。

1955年,施密特与科妮莉亚·托姆(Cornelia Tom)结婚。二人婚后共生育了三个女儿:安妮·施密特(Anne Schmidt)、玛丽·施密特(Marijke Schmidt)与伊丽莎白·施密特(Elizabeth Schmidt)。

1956年,施密特获得博士学位,其学位论文的主题是用21厘米谱线的观测确定银河系的质量分布。此后2年,施密特以卡耐基学者(Carnegie Fellow)的身份在威尔逊与帕洛玛天文台(Mt. Wilson and Palomar Observatories)工作,类似于现在的博士后工作。1958年,施密特回到莱顿大学。一年之后,他被威尔逊与帕洛玛天文台聘用,同时担任加州理工学院副教授。

当时的帕洛玛天文台拥有口径为200英寸(5.08米)的海耳(Hale)望远镜,它是当时世界上口径最大、性能最优越的光学望远镜。在天文学中,“光学”指可见光。1959年,施密特发表了一篇论文,将星际气体的密度与其中的恒星的形成率联系起来,人们称这个结果为“施密特律”(Schmidt law)。此时,施密特尚不足30岁。

施密特的这篇论文对恒星形成理论有深远影响,至今为止获得至少两千次引用。

施密特开始进入射电源领域。射电源指的是那些发射出射电辐射的天体。20世纪50年代开始,射电天文学蓬勃发展,射电天文学家发现了天空中很多射电源。1959年,这个星表被更新为“第3版剑桥射电源星表”(Third Cambridge Catalog of Radio Sources)并出版,这就是著名的“3C表”,3代表第3,C代表剑桥。

1960年春,施密特的同事鲁道夫·闵可夫斯基(Rudolph Minkowski,1895-1976)凭借海耳望远镜的观测,确认3C表中的3C 295是一个星系,其红移是0.461,这是此前测出的星系的红移的记录的2倍。这类发出强烈射电辐射的星系被称为“射电星系”。

1960年夏天,马修斯找到阿兰·桑德奇(Allan Sandage,1926-2010),希望后者能够用海耳望远镜观测他圈出的10个看上去很小的射电源,以确定它们是不是射电星系。

1960年9月,桑德奇用海耳望远镜观测了表中的第48号射电源——3C 48,探测到一颗大约为16等的类似于恒星的蓝色天体,周围有一小缕星云状的物质。马修斯与桑德奇都认为这是一个前所未见的“射电恒星”。

尽管16等星比大多数人能够看到的最暗的星(6等)还暗了1万倍,但在海耳望远镜的“眼”中显然算是亮星了。桑德奇拍摄了它的光谱,并测量了光谱中的一些发射线,发现根本无法与实验室中的光谱线对应上。此外,桑德奇的持续观测还表明,3C 48的光学亮度每隔14天就会变化一半,据此可以推断出它的发光区域大小仅是太阳系大小的几倍。这个结果让桑德奇更相信这是一个恒星。

1962年,桑德奇拍摄了3C表中的3C 273的位置,发现了一颗大约为13等的浅蓝色星体,它的亮度是16等的3C 48的亮度的16倍。桑德奇还发现3C 273的中部有一根发光的“细刺”,像星云状物质。我们现在知道,这根“细刺”实际上是3C 273抛出的喷流。

1962年秋,西里尔·哈扎德(Cyril Hazard)与合作者利用月亮遮掩3C 273的机会,用帕克斯(Parkes)射电望远镜确定了3C 273的更精确的位置。施密特发现3C 273的精确位置恰好与桑德奇发现那颗小而亮的蓝色“星”的位置重合。这意味着,那颗小蓝“星”就是3C 273的光学对应物。天文学的一场疾风骤雨马上就来临。

1962年12月27日,施密特用海耳望远镜拍摄了3C 273的光谱。由于它实在太亮,常规的曝光时间竟然使底片被过度曝光。第二次与第三次,施密特都成功获得了它的光谱。施密特发现,3C 273的光谱非常奇怪,出现了9条相当宽的发射线。其中,中心波长为323.9纳米、503.2纳米、563.2纳米、579.2纳米的4条发射线尤其显著。施密特无法确认这些发射线对应哪种化学元素。

此后,他多次想破解这个谜团,但却毫无头绪。他深感苦恼,一度想放弃。

差不多同时,施密特的同事贝弗利·奥克(Beverley Oke)用威尔逊天文台的100英寸(254厘米)口径的胡克(Hooker)望远镜拍摄了3C 273的光谱,光谱中显示出一条位于红外波段的强烈的发射线,它的波长为759.0纳米。1963年2月5日,周一,下午,施密特来到办公室,想继续思考自己得到的结果。

当他把那张光谱底片放入仪器时,他突然意识到,他确认的发射线中的3条与奥克确认那条发射线的分布规律与氢的巴耳末(Balmer)线系中的几条线很像。

然后,施密特脑中突然出现一个违背祖训的想法:这些光谱线可能就是氢的发射线,只是它们往红移了一端移动(“红移”)。这个看似疯狂的想法让施密特莫名兴奋,他马上在身边找到一条简陋的滑动刻度尺,直接测量出移动的量,然后立即得到了3C 273的红移是0.158。也就是说,这些光谱是氢的光谱线,只是它们的波长被拉长了0.158倍。

施密特乘胜追击,确定出所有被确认出波长的发射线的本质:奥克拍摄的那条线是氢的巴耳末线系中的Hα线;他自己确认的6条线中的4条分别是Hβ、Hγ、Hδ与Hε线。施密特兴奋地走出办公室。在走廊走动时,他恰好遇到了格林斯坦。他立刻把自己的发现告诉后者。格林斯坦恍然大悟,此前他也曾设想3C 48的光谱产生了显著红移,但却因为认定它是一颗银河系内的恒星而放弃了这个想法。

有了施密特的工作的印证,格林斯坦坚定了信心。

施密特的发现确实是骇人的:结合距离与观测到的亮度,可以算出3C 273的光度达到太阳光度的2万亿倍左右(现代计算值是4万亿倍),是当时被确认的最亮的射电星系的亮度的光度的100倍左右。一个大小远远小于银河系的天体,却比星系亮得多,这在当时实在是骇人听闻。

施密特很快写了一篇论文,讨论了3C 273的光谱,并将其中的发射线解释为被红移了0.158倍之后的氢、镁与氧线。这篇论文发表于《自然》(Nature),标题是《3C 273:一个大红移的类星物体》。在这篇不到1页的划时代的论文中,施密特报告了自己的观测,并指出,3C 273的红移基本上不可能是恒星的引力造成的“引力红移”,而是由宇宙膨胀导致的“宇宙学红移”。

施密特认为,3C 273是一个星系的核心,该星系的红移是0.158,它的速度是光速的0.158倍,即47400千米每秒。施密特计算出3C 273与地球的距离约为5亿秒差距,即约16亿光年(根据现代的哈勃常数计算得到的数值是24.4亿光年)。施密特还计算出3C 273的直径小于1000秒差距(3262光年,1000秒差距只是粗略估计值,并非精确值)。

施密特不仅正确解释了3C 273的红移,而且正确地猜想它是一个星系的核心,显示出他大胆而超前的思维。

1965年,施密特发表了另一篇重要的论文,公布了5个主要由他发现的新的类星体,其中有3个的红移为1,最远的那个的红移更是高达2。正如他自己所说:“我们现在可以轻易获得很高的红移(的类星体),因为这些该死的东西实在太亮了。”

施密特的发现让整个天文学界与大量普通人大受震撼。

人们都已经意识到宇宙学与天文领域的一场巨大的变革已经猝然到来。施密特一战成名。1966年3月11日,施密特成为《时代》周刊的封面人物。《时代》将施密特与伟大的物理学家与天文学家伽利略(Galileo Galilei,1564-1642)相提并论:17世纪的这位意大利人(伽利略)震惊了同时代科学家与神学家,20世纪的这位荷兰人(施密特)同样震惊了同时代的其他人。

施密特的名声成功破圈,成为媒体的宠儿与社会名流。当时的天文学家将这些谜一样的天体称为“类星射电源”(quasi-stellar radio sources),或“类星体”(quasi-stellar objects,QSOs)。

1964年,丘宏义(Hong-Yee Chiu,1932-)在一篇文章中嫌“类星射电源”这个词组太长,因此直接将其称为“quasar”,直译是“类星”;但国内的天文书籍也将其翻译为“类星体”。

施密特继续寻找、观测类星体,从而对类星体的确认、计数、统计、空间分布、演化、红移-距离关系等问题也做出重要贡献。例如,他发现,红移大约为2.5的宇宙中的类星体的产生率是最大的。

在类星体被发现后的十年左右的时间内,对于其距离与能源一直存在争论。施密特等人相信它们的红移是“宇宙学红移”,因此是非常遥远而明亮的天体;另外一些天文学家则反对前者的观点。尽管如此,“宇宙学红移”的观点依然占据主流。这样就必然带来另一个问题:如何解释它们的高光度?

1964年,萨尔彼得(Edwin Salpeter,1924-2008)与泽尔多维奇(Yakov Zel'dovich,1914-1987)分别提出,星系中心的超大质量黑洞吞噬周围的物质,物质内部的粒子相互摩擦生热,加热物质,可以解释类星体的高光度。

1973年,克里斯蒂安(Jerome Kristian)用海耳望远镜拍摄了26个类星体,发现其中一部分类星体明显地嵌在一些星系的中心。

这强烈支持了施密特提出的“类星体是星系的核心”的建议。不过,反对者依然可以说这些重合可能只是视线上恰好重合。1982年,托德·波罗森(Todd A. Boroson)与奥克发现了类星体3C 48周围的星系,并确认这个星系的红移与3C 48的红移相同。这直接证明类星体的红移确实是真实的宇宙学红移。

施密特在1964年升为加州理工学院教授,1972-1975年,他担任加州理工学院天文系主任。

1976-1978年,他担任加州理工学院的数学与天文组主席。1978-1980年,他成为海耳天文台的台长,该天文台由“威尔逊与帕洛玛天文台”改名而来。由于威尔逊天文台与帕洛玛天文台一直貌合神离,施密特于1980年拍板解散海耳天文台,使其恢复为原来的两个独立单位。他也因此成为海耳天文台最后一任台长。1996年,施密特光荣退休。但在此后大约十年,他继续从事研究并发表论文。

由于对确认类星体并为人类认识类星体的各种重要性质做出重要贡献,施密特从1964年开始就获得了众多重要奖项。

这些奖项包括1964年的沃纳奖(Warner Prize)、1978年的诺里斯·罗素讲席、1980年的英国皇家天文学会金质奖章(Gold Medal of the Royal Astronomical Society)、1991年的沃森奖章(James Craig Watson Medal)、1992年的布鲁斯奖章(Bruce medal)与2008年的首届科维里天体物理学奖(the Kavli Prize for Astrophysics,与林登-贝尔分享)。

类星体被公认为20世纪60年代的“四大发现”之一。施密特凭借自己的敏锐直觉与专业素质,抓住了转瞬即逝的机会,有幸成为第一个确认出类星体的人。从此以后,人类不断发现更多类星体,它们的红移的值也不断刷新。2021年,天文学家发现类星体J0313–1806,测出它的红移高达7.64,那个时候的宇宙年龄才6.7亿年(宇宙年龄在138-140亿年之间)。这个记录还会在未来被快速刷新。

在施密特的职业生涯的巅峰时期,他一次次在入夜后乘坐电梯进入位于海耳望远镜的主焦点的“笼子”里;电梯移开后,他开始彻夜观测。在微冷的夜晚,他拒绝为了御寒而穿上更多衣服,因为他认为在寒夜里受点苦才会让观星的过程更浪漫。他让自己的浪漫情怀与坚韧意志结合在一起。

在至今为止被发现的近100万个类星体中,由施密特确认的3C 273具有特殊的地位:它不仅是第一颗被确认的类星体,也是唯一能够用小望远镜看到的类星体,因为它相对近(虽然它不是最近的类星体)且极端亮。施密特凭借过人的才智、敏锐的直觉、超前的思维、浪漫的情怀与坚韧的意志,为人类探索宇宙做出了杰出的贡献,也获得了应有的荣誉。他是可以安息的。

UUID: 8679390f-9285-4d66-875f-d64aee9c20b8

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2022/返朴_2022-09-27_那个午后的天才妙想,让《时代》周刊将他与伽利略相提并论.txt

是否为广告: 否

处理费用: 0.0321 元