谷歌量子纠错取得重要突破:逻辑量子比特寿命大幅延长

作者: 无邪

来源: 返朴

发布日期: 2024-09-14 08:34:26

谷歌量子AI团队在量子纠错领域取得重要突破,通过表面码纠错技术大幅降低错误率,延长逻辑量子比特寿命,显著提升量子信息的存储寿命,展示了其在量子计算机竞赛中的领先地位。

近日,谷歌量子AI团队公布其量子纠错新进展,他们所构建的表面码纠错大幅降低了错误率,使得逻辑量子比特寿命高于物理量子比特,显著延长了量子信息的存储寿命。这项在量子工程领域具有里程碑意义的工作证明,谷歌团队依然在量子计算机竞赛中占据领先地位。

四年前,我曾翻译过一篇发表于Science上的评论文章《量子计算的下一个超级大挑战》,这个超级大挑战正是量子纠错。彼时正值谷歌量子AI团队(Google Quantum AI)刚刚完成“量子霸权”的演示,引发全球关注。四年来,全球多个量子计算的顶级团队在向这一超级挑战发起冲击,而谷歌量子AI团队,无疑是其中的先锋队。

最近,谷歌团队在arXiv上贴出了他们的最新成果:低于表面码阈值的量子纠错(Quantum error correction below the surface code threshold)[1]。他们在一片包含105个量子比特的芯片中实现了码距为7(d=7)的表面码纠错,同时在一片72量子比特芯片中实现了码距为5(d=5)的表面码纠错及其实时解码。

两种情况下均超过纠错的“盈亏平衡点”,也就是编码后的逻辑量子比特中的信息存储寿命,高于所有参与编码的物理量子比特的寿命。

具体来说,码距为7的逻辑量子比特寿命达到了291微秒,而所有参与编码的量子比特平均寿命为85微秒,最高119微秒。折算下来,量子纠错让量子信息的存储寿命延长了2.4倍。这是一项非常了不起的工程结果,大幅提升了表面码量子纠错的工程可行性,为未来实现具备实用价值的逻辑量子比特注入了强大的信心。我认为这一工作的意义,不亚于当年的“量子霸权”,甚至也不亚于2023年中性原子体系中所取得的量子纠错成果。

左图为不同码距的表面码纠错下的逻辑错误率,图中同时引用2023年两个d=3纠错码的数据;横轴为纠错周期数,曲线越平缓,表明错误率越低。右图为不同码距错误率拟合的错误抑制系数Λ,在这里为2.14,意味着系统错误率不到表面码纠错错误率阈值的二分之一;随着码距的增加,纠错后错误率将以指数形式快速下降。

丨图片来源:参考文献[1] 现实中的量子比特,或者叫物理量子比特,总是会因为各种原因而出错,比如莫名其妙飞过的光子、材料中的某个缺陷,甚至可能是来自遥远宇宙深处的一束宇宙射线。错误会在进行量子计算的过程中累积、传递,导致最终的结果不可用。

量子纠错理论的出现,让我们重新燃起了希望。利用冗余的量子比特,以某种方式将它们编码在一起,可以诊断出哪里出错了。如果错误足够“稀疏”,同时又有某些手段及时纠正出错的比特,我们就能够实现量子纠错——得到理想的、不会出错的量子比特,上面说的错误累积也就不会出现,我们总能得到正确的计算结果。

由于这种纠错编码的量子比特的信息并不是存储在某个或某些具体的物理量子比特上,而是以一种纠缠约束的、抽象的形式存在,因此我们将其称为“逻辑量子比特”。早在上世纪末,量子纠错的理论就开始发展:最早的纠错码由Shor和Steane独立提出,接下来Calderbank、Shor和Steane又共同给出了纠错的一般性理论,即著名的CSS码,奠定了量子纠错的基础。

表面码属于更广义的“拓扑码”中的一种,这一编码家族的基本设计理念,是将多个重复的纠错单元“拼接”起来,这种模块化的设计方法使得拓扑码具有良好的可扩展性,符合工程化实现的要求。表面码只需要近邻耦合,对错误率的阈值要求,或者说“门槛”比较低,尽管其编码效率不高,但已成为目前最具工程实现价值的编码方法之一,特别适合于超导量子芯片。

最新的105量子比特芯片性能统计。图中画的是不同类型错误的累计直方图。红色:单比特门错误率;黑色:两比特CZ门错误率;黄色:闲置(即不做任何操作)时的错误率;蓝色:读取(测量)错误率;浅蓝:权重-4探测概率。

还有几个亮点值得提一下,一个是实时解码技术。表面码量子纠错需要不断地制备稳定子,对辅助量子比特进行测量并重置,然后再重复这一过程。在这个过程中,我们需要对测量结果进行解码,以保持对错误症候的追踪,并在需要对逻辑量子比特进行操作时及时纠正错误。显然,实时解码对于实用的容错量子计算是必要的,不过对解码器的性能也提出了极为苛刻的要求。

另一个亮点是团队为了试探系统的错误率背景极限,测试了码距为29的“重复码”——它可以看作表面码的一维情况,它不能同时侦测所有的Pauli错误(指错误可以表示为Pauli矩阵的线性组合;举例来说,量子态绕X或Z轴翻转了180度),只能侦测比特翻转或相位翻转中的一种。测试结果表明,在码距达到大约25之后,逻辑错误率就饱和了,大概为百亿分之一(10-10)的水平。

团队发现这一背景错误率来源于大约每小时发生一次的不明来源的关联错误。

总而言之,这是一个非常了不起的工作,谷歌再次证明了他们顶级的量子计算工程技术能力。作为同行,我既感到兴奋,也感到忧虑。感到兴奋,是因为这是朝容错通用量子计算迈出的重要一步,是大量量子工程技术的系统性进步,让全世界看到了更多的希望。感到忧虑,则是站在国家角度,这有可能意味着在量子计算领域中美之间的差距在无形中拉大。

后记:就在稿子编辑的这几天(9月10日),微软蓝天量子(Microsoft Azure Quantum)团队首次在催化反应手性分子模拟中,演示了“端到端”的高性能计算(HPC)、量子计算和人工智能组合[2]。在量子计算部分,他们采用了C4码纠错保护的逻辑量子比特来进行基态制备,而不是物理量子比特。可见量子纠错将快速成为量子计算工程技术的主战场,而我国的量子计算工程能力急需提升以应对这些竞争。

UUID: d8a60ec9-cf31-4823-b4b3-0e56843aa5ca

原始文件名: /home/andie/dev/tudou/annot/微推助手/返朴/返朴_2024-09-14_谷歌量子纠错取得重要突破:逻辑量子比特寿命大幅延长.html

是否为广告: 否

处理费用: 0.0067 元