范畴论是研究数学的数学,讨论关系的关系。以前为了描写对称性,群论走进了物理。现在为了描写量子材料中的量子纠缠,范畴论也正在走进物理。范畴论是一个关于关系的理论,描述并研究关系的所有可能性质。如果绘制一幅数学地图,地面上会有代数、拓扑、分析等不同领域,而范畴论则像是悬挂在天空中的月亮,它提供整个地图的缩略图,让我们看到在地面看不到的各个领域之间的关系,证明看似不相关的数学领域并非完全不同。
当你在某个数学领域的边界处艰难跋涉时,范畴思维可以指引你,它增强你的直觉,让你的洞察力更敏锐。而这一个关于关系的全盘抽象理论,也正好是描写多体量子纠缠的自然语言。
从最早开始学习数学,我们就知道代数与几何有很强的关联,代数方程可以表示成图形和几何对象,几何特征可以用代数表达式刻画。就好像有一座桥梁连接广阔的数学世界中的这两个领域,桥的两边互为镜像。
代数与几何之间对应关系的3个例子:代数表达式-三角形面积,二次方程-半径为2的圆,线性方程-斜率为1的直线。因此,尽管代数和几何是很不相同的数学领域,但这种联系表明,它们之间存在着内在关联。不仅如此,还有集合论、群论、线性代数、拓扑学、图论、微分几何等等,这些看上去似乎没什么关系的数学分支实际上都存在深层次的关联,代数与几何的关联只不过是其中的冰山一角。
范畴论的一个主要特点是它剥离了很多细节:它并不具体关心集合中的某个元素,或者某个群是否可解,或者某个拓扑空间是否有可列基。所以你可能会想,“呃,范畴论似乎太抽象了。这样做有什么好处吗?”当然,答案是肯定的!剥离细节的一个好处是,我们的注意力从单个对象上转移开,转向它们之间存在的关系——态射。任何一个范畴论专家都会告诉你:关系就是一切。
事实上,范畴论的一个主要信条就是,一个数学对象完全由它与所有其他对象的关系决定。换句话说,当且仅当两个对象以同样方式与范畴中的每个对象相关时,两个对象本质上是不可区分的。这其中的主旨与我们的日常经验并没有太大区别。你可以通过观察人们的关系来了解他们,比如他们在Facebook上的朋友,他们在Twitter上关注的人,他们周五晚上和谁出去玩。
如果你遇到两个人,他们有完全相同的朋友,他们在社交媒体上的互动也完全相同,他们在周五晚上和相同的人在一起,那么你可能会开玩笑地说,“你甚至分不清他们。”撇开所有玩笑不谈,范畴论告诉我们,这其实是真正的数学!