程亦凡追忆李方华:她没有博士学位,但早已是一代宗师

作者: 乌鸦少年

来源: 返朴

发布日期: 2020-02-24 08:00:00

李方华院士是著名物理学家,中国科学院物理研究所研究员,她对高分辨电子显微学和电子晶体学的理论与分析方法的发展做出了重要贡献。她的学术生涯和科研精神对后辈产生了深远影响。

1月24日,著名物理学家、中国科学院物理研究所研究员李方华院士辞世,享年88岁。李方华老师是一位在同行中赢得了广泛尊敬的科学家。她不仅学问一流,而且纯粹淡泊,这在今天浮躁的中国科学界显得尤为可贵。

李方华先生于1932年出生于中国香港,1950年考入武汉大学物理系,1952年以优异的成绩被保送至前苏联列宁格勒大学物理系学习。1956年学成归国后到中国科学院物理研究所工作,师从著名晶体学家陆学善先生,从事合金结构的X射线衍射研究。

上世纪70年代,李方华敏锐地注意到了高分辨电子显微学作为电子显微学的一个新分支学科在国外逐渐发展起来,便投身到相关研究当中。80年代,她提出高分辨电子显微像的衬度理论——赝弱相位物体近似理论,并合作创建了全新的图像处理技术,可成功地运用于小晶体、超导体材料的晶体结构测定和半导体的晶体缺陷测定,还可获得更高的分辨率。

上世纪80年代,材料科学家 Dan Shechtman 第一次在电子显微镜下观察到了铝锰合金的准晶结构。李方华的实验室敏锐地捕捉到这项科学突破,迅速开展了关于准晶的研究。1988年,她根据实验现象提出,准晶体与晶体之间存在中间状态。随后,她指导的研究组拍摄到反映准晶体与晶体之间转变过程的一系列电子衍射花样。在此基础上,她借助相位子应变场理论,推导出二十面体准晶体与体心立方晶体相之间的晶体学关系。

李方华是我国单晶体电子衍射结构分析的开创者,她发展了高分辨电子显微学和电子晶体学的理论与分析方法。在国际电子显微学界,李方华也是一个令人肃然起敬的名字。

“无华足迹,芳华人生”,人们曾用这句话概括她对科学孜孜以求的一生。在李方华先生过世后,她昔日的学生、现任美国加州大学旧金山分校(UCSF)教授、霍华德·休斯医学研究所研究员的程亦凡接受了《返朴》专访,回忆了跟随先生求学的历程,以及先生对自己学术生涯的影响。芳华已逝,但先生对科学的贡献,对后辈的支持,还有她为学为人的纯粹优雅都非常值得我们铭记。

李方华老师是我的博士导师。

我是1987年到物理所读博士,开始做李老师的学生,跟随她学习电子显微学和电子晶体学。在我来到物理所之前,李老师已经是电子显微学领域做得最好的几位专家之一了,很有名望,特别是在高分辨电子显微学和图像处理方面。当时人们对于电子显微学中高分辨电子显微像衬度的解释是基于弱相位物体近似理论,但这个理论只有在样品很薄时才成立。

李老师引入“赝弱相位”的概念,这样对高分辨电子显微像的衬度解释可拓展到比弱相位物体近似宽容得多的厚度,从而得以解释高分辨像中轻重原子的衬度反转的现象。

另一方面,上世纪八十年代电镜高分辨像受到电镜像差的影响,分辨率不高,而电子衍射分辨率则不受影响。也许李老师是受先生范海福的影响,她根据衍射分辨率高的特点,将晶体学中的直接法相位外推用于高分辨像,将高分辨像和电子衍射相结合,从而使得普通电镜可以获得将近1埃分辨率的高分辨图像。因为这些成果,李老师当时在高分辨电子显微学领域可以说是数一数二的专家了。

我进入物理所后一直在先生的指导下做二十面体准晶结构的研究。1982年的时候,材料科学家 Dan Shechtman 第一次在电子显微镜下观察到了铝锰合金的准晶结构,这个结果直到1984年才发表了出来。当时我正在武汉大学读研究生,因为对准晶结构感兴趣,我进入到了电镜这个领域,在硕士阶段跟随王仁卉老师学习,博士阶段就到物理所跟随李老师继续研究准晶结构,直到1991年毕业。

之后我去挪威做了两年的博士后,博士后结束后又回到物理所,在李老师的课题组里待了一年。在我博士毕业之前,李老师已经开始将目光转向生物冷冻电镜方向,开始做一些图像处理方面的工作。等我回到李老师课题组的这一年,她已经花费了很大精力,指导学生对冷冻电镜二维晶体学进行了大量调研。我们以前都不曾注意到冷冻电镜这个领域,但受李老师影响,我们很多同门都跟随着李老师,慢慢开始了解冷冻电镜。

等到后来我再去德国做两年博士后,就决定从对准晶的研究转向冷冻电镜了。包括我后来去日本藤吉好则先生实验室做博后,在很多方面都是受到李老师的影响。我在藤吉先生实验室做博后时,一直在做膜蛋白二维晶体的工作。现在回想起来,二维晶体的图像处理方法和李老师用直接法相位外推来提高分辨率的方法很有异曲同工的味道。也许正是因为这种相似性,李老师一直希望将相位外推的方法用到冷冻电镜的二维晶体学中。

记得周正红说起过,李老师曾给他提过这样的建议。

从李老师组里出来转行做冷冻电镜的有十多个人,像我、徐晨、李雪明、刘骏、何万中,以及后来的一些师弟师妹们,我们同门中很多人都受到了李老师的影响。可能因为大家在实验室里经常听到李老师说起冷冻电镜,所以有勇气去尝试这个新的方向。

李老师对学生要求很严格,做得不好的地方该训就训。我自己当年就没少挨先生骂(笑),但是也终身受益。后来李老师跟学生开玩笑时自己也说,她是物理所“四大恶人”之一(笑)。她在物理所是出了名的严格,治学非常严谨。我想从这方面来讲,李老师不输给任何一流科学家。

李老师本来做的主要是高分辨电子显微镜,后来她为什么重视起了对冷冻电镜的研究?

冷冻电镜其实就是用电子显微镜给蛋白质拍照,具体说就是把蛋白质冷冻在一层很薄的玻璃化的水里,拍摄蛋白质的结构照片。拍摄蛋白质的结构照片的传统方法是让蛋白质结晶,蛋白质结晶以后是有序排列的,比较容易处理。但是有时候蛋白质无法长成晶体,这时候就需要冷冻电镜。冷冻电镜是拍摄各种不同取向的单个颗粒蛋白的二维图像,然后用计算机将这些二维图像结合起来,重构成完整的三维图像。

所以对于单颗粒冷冻电镜,很大一部分工作是图像处理。而李老师研究的正是图像处理的理论方法。所以她希望能将这些方法应用到冷冻电镜领域。

在冷冻电镜发展早期,在方法学方面做的最好的科学家往往要有很好的数理基础,像因为冷冻电镜技术而获得2017年诺贝尔化学奖的三位科学家,他们本科阶段都是学物理的。

看得出,李老师对前沿非常敏锐。那个时候的老先生,像李老师,还有郭可信先生,都在安排人员做冷冻电镜相关的研究。那个时候做冷冻电镜主要是关于二维晶体。当时国内最大的限制是没有仪器设备,李老师主要是从国外同行那里得到一些数据,在方法学方面做一些工作。李老师和郭先生他们的科学眼光促成了当时国内不少学电镜的学生们出国后转到冷冻电镜方向。

确实,当时没有什么好的仪器,但是他们会利用自己擅长的思路做出贡献。

现在冷冻电镜发展起来了,国内很多实验室做得好,其中的一个重要原因是国内现在的科研投入非常多,有强大的财力支撑,有科研人员的刻苦,加上足够的人力和最好的仪器,而且大的方向已经明确,把握住了机会,是能够做出好的成果来的。但是在那个经费、仪器都受限制的年代,更依赖科学家自身的思路和眼光。科学家需要找出自己独特的方向,结合自己的优势,做别人做不了的事情。

李老师的思路就非常清楚,她对图像处理非常熟悉,所以希望把图像处理的方法应用到冷冻电镜这边来。

李老师一直希望能够在物理所开展冷冻电镜方面的研究。她的想法是,物理所有自己独特的优势,很多人有图像处理的基础,对电子光学很熟悉,超过大部分做冷冻电镜的人,所以她希望能够将物理的方法应用到生物电镜的图像处理,做出自己特色的工作。不是跟在别人后面,做别人已经做过的东西,而是在方法学上面做出自己独特的贡献。

现在想想,我确实很佩服这一代科学家。我在博士阶段曾经有段时间对物理失去了兴趣,因为觉得物理学的辉煌时期是上世纪的20年代,我们从课本上学到的都是50多年前的知识,好像没有新东西可以做了。但是80年代发现准晶之后,像郭先生、李老师他们都能很敏锐地抓住这些新的突破,而且当时他们工作的分量是世界一流的,在同行中是深受认可的。

李老师一生的经历比较奇特。她没有获得过博士学位。她在1950年解放初期进入武汉大学物理系学习,1952年被保送到前苏联列宁格勒大学物理系,1956年回国就到物理所工作,跟随陆学善先生做研究。现在看来,就相当于获得了本科学位,到物理所做一个工作人员,但实际上是相当于跟着陆先生读研究生。

上世纪70年代末刚刚改革开放的时候,中日关系和解,前国际电镜学会主席、日本科学家桥本初次郎等人来到中国讲学,待了好几个月时间。李老师很早就对电子显微镜感兴趣,后来跟随桥本先生到日本待了大概半年时间,相当于访问学者。桥本先生非常欣赏她,多次建议她到日本学习一两年,拿个博士学位。但李老师觉得只为拿学位是浪费时间,没必要,她说自己都已经带出了好几个博士了(笑)。

所以她对这些事情看得很淡,在那个特殊的年代,她实际上早已经是电镜领域的一代宗师了。他们那一代科学家更注重的是在科学上做成事情,不是很看重学位这些东西。

李老师对科学的贡献,对后辈的支持,还有她为学为人的纯粹优雅都非常值得我们铭记。

UUID: 47c328ed-0e9d-45f0-a74c-d76500b62c72

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2020/返朴_2020-02-24_程亦凡追忆李方华:她没有博士学位,但早已是一代宗师.txt

是否为广告: 否

处理费用: 0.0104 元