材料的化学信息是理解科学、工程与技术领域各种过程、机制和材料行为的最基本要素。材料研究的第一步即是确定材料的化学,包括构成材料的原子的种类、分布以及具体的化学态等内容。任何具有元素特征的物理信息,包括原子量、电子的能级、原子核自旋,甚至局域的电子态密度等都可以用来做材料的化学分析。
化学信息由来自材料本身的或用作探针的电子、光子、离子或中性原子携带,相应的分析技术包括X-射线光电子能谱,俄歇电子谱,核磁共振,特征X-射线分析,二次离子质谱,能量损失谱,溅射中性粒子质谱,各类离子散射谱以及扫描隧道显微学,等等。本文对上述各种分析方法的物理原理、仪器以及应用等逐一做扼要的介绍。
本文是基于笔者2003年前后讲授材料化学分析技术的课件撰写而成的,原发表于《物理》杂志2004年第33卷第4、5期。此次重新整理发表,希望让更多人能明白一个最浅显的道理:“天下没有现成的、不言自明的实验方法和实验仪器。”
材料的化学包括构成材料的原子种类、分布以及具体的化学态等内容,它是理解科学、工程与技术领域各种过程、机制和材料行为的最基本要素。
以稀磁半导体材料的研究为例,首先就必须确定掺杂了何种磁性元素,磁性原子的分布,是否自己形成团簇(cluster)或畴(domain)还是和半导体元素形成了某种化合物,那些以替代原子形式掺杂的原子的价态,这些都属于材料化学的范畴。只有弄清楚这些化学信息,进一步的有关磁学性质的研究和在自旋电子学(spintronics)方面的应用探索才能进退有据。
任何具有元素特征的物理信息,包括原子量、核素数、电子的能级、原子核自旋,甚至局域的电子态密度等都可以用来做材料的化学分析。有时元素的化学特征是毫无疑义的,如质量数为1 amu的离子肯定是氢离子;有时则可能和其它元素的特征有一定程度上的重合和干扰,有时则干脆需要在已知哪些元素在场的情况下才能通过比较加以区分。
化学信息可以由材料本身表现出来,但多数情况下则需由作为探针的电子、光子、离子或中性原子与样品通过某种相互作用来获取。常见的用于固体材料化学分析的技术包括光电子能谱,俄歇电子谱,核磁共振,特征X-射线分析,二次离子质谱,能量损失谱,溅射中性粒子质谱,各类粒子散射谱以及扫描隧道谱学等等。这些方法依据的物理原理不同,探测方式和仪器构造不同,获得的化学信息的侧重点和可靠性不同,适应的研究对象也不同。
需要指出的是,一种方法探测的信号其反映的材料的物理和化学方面的信息是多方面的,有些信息需要通过调整运行参数予以突出或通过不同条件下的测量加以比较才能够提取的。有时候一些测量结果可能包含杂散信号,鬼峰(ghost line)或假象(artifact),甚或因为操作不当所得到的测量结果与样品干脆无关,这会导致得出错误的结论。
因此,理解具体的相互作用的物理内容、仪器的构造、探针粒子的产生与探测方式以及信号的采集与数据处理所采用的数学方法就显得非常重要。另外,随着材料科学所涉及的各种结构单元以及器件的尺寸不断缩小,器件的功能越来越强烈地依赖于局域的特定的化学状态,这对材料分析方法的空间分辨率、能量分辨率和探测灵敏度的要求也不断提高。
举例来说,用扫描透射显微镜的能量损失谱线扫描(line scan)分析镶嵌在氧化硅基质内的纳米硅颗粒(典型尺寸约3nm),现在能做到能量分辨率好于0.2eV,空间分辨率约为0.2nm。相应地,超高分辨的化学分析对研究者本身的基础知识和操作技能也提出了非常高的要求。
本文重点介绍目前常用的化学分析方法的物理学原理,基于其上的仪器的设计思想和构造,间或对这些分析手段应用过程的一些问题做简单的讨论。
作者相信,研究人员即便无意成为一个专业的分析人员也应该充分理解许多分析方法所涉及的物理过程,熟悉仪器构造和工作原理。只有这样才能针对自己的研究问题寻求合适的实验手段,才能够对实验结果给出合理的审慎的解释。为了方便读者查阅英文文献并为了避免术语不规范造成的歧义,文中关键词都加注了英文原文。
根据具体化学所依据的元素的特征,本文把所讨论的分析方法分为四类:(1)基于电子能级类方法,包括光电子能谱、俄歇电子谱、特征X-射线分析、能量损失谱等等;(2)基于核自旋的核磁共振方法;(3)基于原子质量的各类质谱方法;包括二次离子质谱、溅射中性粒子质谱、各类离子散射谱等;以及(4)基于局域电子态密度的扫描隧道谱学。
本文讨论的分析方法都要求真空条件,这是因为:(1)仪器部件要求真空。
如电子枪的灯丝在高真空下才能工作;光电倍增管不工作时也应保存在真空中以防中毒(poisoning)。(2)避免环境气体的干扰。作为探针的电子、光子和离子同环境气体分子的碰撞会产生杂散信号,降低信号强度和分辨率,丢失部分信息(比如方向和相位的信息),等等。(3)防止样品污染。
作为简单的判据,假设分子到达样品表面后附着系数(sticking coefficient)为1,则当真空为10-4 Pa时每秒钟就有一个单层吸附到样品表面。特别地,强的探针粒子束即便在超高真空下也会在局域样品表面引起不可接受的污染。如透射电镜的电子束照射下的样品,在高达10-9 Pa的真空下,依然迅速被吸附碳所污染。环境气体的存在是用物理方法做化学分析时,尤其是显微分析,必须考虑的因素。
当然,近年为了研究一些材料在实际使用条件下的真实的化学特性与结构,上述的一些分析仪器还被改造成了环境(environmental)分析手段,但这不在本文讨论范围。