历史上,我们对世界物质世界的认识经历了好几次大革命。第一次大革命是以牛顿定律为代表的力学革命。它建立了一个世界观,认为万物都是由粒子组成的,而粒子的运动是由牛顿定律来描写的。这使我们感到牛顿的力学理论,是描写世界上一切物质的完美理论,包括看起来很不相同的波动现象(见《见证奇迹的时刻:从牛顿定律到波的运动》)。
第二次大革命是以麦克斯韦方程为代表的电磁革命。
它统一了三种看起来很不相同的自然现象:电、磁和光现象,并特别指出光其实就是一种电磁波(一种由电磁相互转变而引起的波动性)。一开始,大家还试图用牛顿的机械运动来解释电磁波。虽然粒子的集体运动能导致各种各样的波动现象,但这些波没有一个满足麦克斯韦方程。这使大家认为电磁波(光波)并不是一种由牛顿定律来描写的机械波,而是一种全新的自然现象。
所以我觉得电磁革命的最本质发现,是发现了物质的新形态:一种场形态的物质。这一场形态物质的运动规律并不是由牛顿定律来描写的,而是由麦克斯韦方程来描写的。电磁革命也改变了我们的世界观:我们不仅有由粒子组成的物质,还有场形态物质。而粒子之间的相互作用,正是由这些场形态物质所引起的。
更近期的两次物理革命是相对论革命和量子革命。这些物理革命对人类产生了极其巨大的影响。轮船、火车、汽车、飞机、照明、收音机、电视、计算机、手机、塑料、医药,等等,没有这些物理革命,我们是无法发展到现在的程度的。这些物理革命所形成的新的世界观成为人类现代文明的基础和内涵。
每次物理革命都不是一个人完成的,而是由很多英雄来缔造的。今天的文章是一个系列的第二篇文章,给读者介绍一下电磁革命的来龙去脉,以及这些改变人类文明的革命是如何在探索和好奇中被发现的。
—— 文小刚
撰文 | 长尾科技
在上一篇文章《最美公式:你也能懂的麦克斯韦方程组(积分篇)》里,我们带着大家从零开始一步一步认识了麦克斯韦方程组的积分形式,这篇文章我们就来看看它的微分形式。
在积分篇里,我们一直在跟电场、磁场的通量打交道。我们任意画一个曲面,这个曲面可以是闭合的,也可以不是,然后我们让电场线、磁感线穿过这些曲面,它们就两两结合形成了四个积分形式的方程组。从这里我们能感觉到:麦克斯韦方程组的积分形式是从宏观角度来描述问题,这些曲面都是宏观可见的东西。那么微分形式呢?微分形式似乎应该从微观角度去看问题,那么我们要怎样把曲面、通量这些宏观上的东西弄到微观里来呢?
一个很简单的想法就是:让宏观上的东西缩小再缩小,直到缩小成一个点,这样不就进入微观了么?积分形式的麦克斯韦方程组需要选定一个曲面,但是它并没有限定这个曲面的大小,我们可以把这个曲面选得很大,也可以选得很小。当我们把这个曲面选得很小很小的时候,麦克斯韦方程组的积分形式就自然变成了微分形式。所以,微分形式的基本思想还是很简单的,真正麻烦的地方是在于,如何寻找一种方便的计算方式,这些我后面会细说。
因为微分形式和积分形式的这种承接关系,我建议大家尽量先看看积分篇的内容。在积分篇里,我是从零开始讲电磁学,讲麦克斯韦方程组,所以阅读起来不会有什么门槛。但是到了微分篇,上篇文章已经详细说了一些东西(诸如电场、通量、环流等概念),这里就不会再细说了。我们不会从天而降地抛出一个东西,如果在这篇文章里遇到了什么难以理解的东西,可以看看是不是在积分篇里已经说过了。
好,下面进入正题。在积分篇里跟大家讲过,麦克斯韦方程组总共有四个方程,分别描述了静电(高斯电场定律)、静磁(高斯磁场定律)、磁生电(法拉第定律)、电生磁(安培-麦克斯韦定律)。这四个方程各有积分和微分两种形式,积分形式我们上篇已经说过了,微分形式我们还是按照顺序,也从静电开始。