暗物质 vs. 修改引力理论,终极对决已经打响?

作者: 田海俊

来源: 返朴

发布日期: 2024-03-19 08:02:08

本文探讨了暗物质与修改引力理论(MOND)之间的争论,分析了宽距双星在检验引力理论中的作用,指出了不同研究团队在结果上的不一致性,并展望了未来研究的方向。

暗物质一直是物理学研究的前沿课题,这项因天文观测异常而诞生的概念可以解释诸多奇异的现象。但我们还未发现它的踪影,因此有一些学者认为暗物质不存在,对于许多天文现象,仅需在弱引力场下修正牛顿引力理论(即MOND理论)便可解释观测结果。在检验引力理论方面,天文学家通过对宽距双星的观测发现,MOND和牛顿引力并未分出高下,甚至对同一类样本给出互为相反的结论。本文将试图解释出现这一现象的原因。

引力理论概述

艾萨克·牛顿在1687年出版的《自然哲学的数学原理》一书首次提出了万有引力理论。该理论是力学发展史上一项重大突破,在人类认知宇宙运动规律的历程中发挥了极为重要的作用。1844年和1846年,英国数学家亚当斯和法国数学家勒维耶分别运用该理论并结合天王星异常的轨道运动,计算出了太阳系的第八颗大行星海王星的存在,并准确预测出了它的位置。

这一结果随后得到了柏林天文台的德国天文学家伽勒的观测证实,使得牛顿的万有引力理论在世界上名声大噪。

1859年,勒维耶发现水星的运动轨迹与牛顿引力理论所预测也存在偏差,水星在近日点表现出奇异的轨道进动特征。因此,他认为在水星轨道的内侧有一颗未知的行星影响着水星的轨道。然而,一直到1877年勒维耶去世的时候,人们也没有找到这颗未知的行星。事实上,这样的行星并不存在。

在近日点,较强的引力场使牛顿的万有引力理论表现出不精确的缺陷。一直到1915年,爱因斯坦提出广义相对论,才几乎完美地解释了水星近日点进动的问题。

广义相对论针对时空和引力给出了一套自洽且严密的理论描述,基于广义相对论的预言(比如引力透镜、引力红移、黑洞、引力波等)均在后续的观测或实验中得到了验证,这无一不证明了广义相对论的正确性。因此,广义相对论被认为是现代物理学理论的基石。

牛顿力学是广义相对论的一阶近似,在高速(接近光速)或强引力场(时空曲率较大)的情况下,物体的运动会表现出显著的相对论效应,牛顿力学不再有效。而低速、弱场条件下,牛顿力学与广义相对论没有显著差异。

随着观测能力不断提升,科学家发现了一些难以理解的观测现象,比如,星系的“平坦旋转曲线”。

无论是在牛顿还是爱因斯坦引力理论的框架下,这些现象都会导致引力缺失的问题,即可观测的普通物质产生的引力无法束缚住离星系中心较远处物质(恒星或气体)的高速运转。对于这一问题,早在上世纪30年代,瑞士天文学家茨维基提出暗物质的概念来弥补引力的缺失,即空间中存在一些不发光、无法直接观测的物质。这些物质虽然不参与电磁相互作用,但有质量会产生引力。

当前研究表明,暗物质约占宇宙总密度的25%,而我们所熟知的普通物质仅占4.7%左右。也就是说暗物质充斥着我们的周围,尽管国际上部署了诸多探测器(比如,诺贝尔奖获得者丁肇中教授主持的阿尔法磁谱仪探测器AMS、我国发射暗物质粒子探测卫星“悟空”号等项目)用于研究暗物质,但是除了引力效应之外,我们对这种物质依然知之甚少。因此,暗物质常被认为是目前人类头顶上的两朵“乌云”之一(另外一朵是“暗能量”)。

另一方面,国际上有一些学者认为,类似于19世纪人们努力寻找的“以太”,暗物质其实并不存在,只是我们公认的牛顿引力理论在一些情况下需要修正。该学派的代表人物为以色列物理学家密尔格罗姆,他在1983年提出修改牛顿第二定律,后来这一理论被称为修改牛顿动力学理论(MOND)。MOND理论认为在极弱的引力场下,牛顿引力需要修正。

目前,虽然暗物质理论处于主流地位,但是MOND理论在解释一些星系尺度上的观测现象中更胜一筹,这使MOND理论和暗物质理论成为了一对竞争的科学理论。在极弱的引力场下,牛顿引力理论是否需要修正,MOND理论是否正确等一系列问题,是目前国际上高度关注的前沿问题。

宽距双星

宇宙中存在很多天体系统适合用来检验引力理论,比如宽距双星。宽距双星是最简单、最小、最脆弱的引力束缚系统,它们在宇宙中普遍存在。由于成员星相距较远(最远可达10-20万AU),成员星之间的引力相互作用极其微弱。因此,宽距双星被认为是在小尺度上检验引力理论的强大探针。

用宽距双星检验引力理论的工作原理不太复杂,通常需要定义一个无量纲的比值。

上式中,分子为两颗子星在投影方向上的相对速度,分母中为子星的投影间距,总质量在给定恒星演化模型后也不难估算。根据比值大小即可判断,双星间的引力是否符合标准的牛顿引力理论。然而,因为一些观测效应,宽距双星被用于检验引力理论的过程比较复杂,诸多因素会导致结果出现较强的不确定性,甚至出现完全相反的结论。这些观测效应主要包括宽距双星的投影效应和双星系统中不可分辨伴星的扰动。

在前文提到的半人马座α三星系统中,比邻星和AB双星之间的距离足够的远,它受到AB系统的引力极其微弱,且因它们是离我们最近的恒星系统,其三维速度、空间位置、质量等物理参数较易测量。因此,科学家早在15年前就尝试通过比邻星的轨道运动来检验MOND和牛顿引力理论。然而,因AB双星会使比邻星的轨道运动变得复杂,且在计算加速度的过程中要求极高的天测精度,最终均未能给出明确的检验结果。

随后,科学家还尝试利用依巴谷卫星、斯隆数字巡天等当时最成功巡天项目的宽距双星样本开展引力理论的检验,但因样本数量和测量精度不足等问题,最终在极弱引力场下仅发现了一些MOND信号的迹象。

2013年12月19日,由欧洲航空局研制并发射了一架空间望远镜,即盖亚卫星探测器。该探测器的主要目标是以前所未有的精度对银河系中十几亿颗恒星进行多次观测,测量它们的位置、距离和运动等信息。

经过近十年的观测,盖亚卫星已经观测并发布了近16亿颗恒星的天测参数,其中对超过3300万颗恒星测量了视向速度。虽然这些参数与我们期望的测量精度尚存在一定差距,但是我们可以从海量的盖亚星表数据中挑选出百万量级的宽距双星样本。如此丰富的样本数据使我们在开展引力理论检验时足以得到统计显著的结果。

在刚刚过去的2023年,国际上多个研究团队发布了利用最新的盖亚宽距双星样本开展引力理论的检验结果,其中较有代表性的团队分别来自于英国的圣安德鲁斯大学、韩国的世宗大学、墨西哥国立自治大学以及英国伦敦玛丽女王大学。这四个研究小组从盖亚星表中挑选出了数量不等的太阳邻域宽距双星样本,并分别独立地开展了引力理论的检验研究,最终均给出了十分明确的结论。

令人惊讶的是,这四个研究小组的结论不一致,其中来自英国的两个团队认为在极弱的引力场下,宽距双星的轨道运动并未表现出异常,而是很好地符合牛顿引力理论,尤其是圣安德鲁斯大学的团队最终以很强的统计置信度排除了MOND理论。而另外两个团队同样以较高的统计置信度声称,宽距双星的轨道运动在极弱的引力场下表现出显著的引力异常,其特征更符合MOND理论的预言,这就是说牛顿引力理论在极弱引力场下需要修正。

这样完全相反的结论,使该课题在国际上一度成为热点话题,引起媒体的广泛关注。

虽然在盖亚高精度测量宽距双星大样本的帮助下,我们对牛顿引力和MOND理论有了进一步的深刻认识,但是到底哪个团队的结果更符合真实情况,也许要待2025年盖亚卫星释放更多、更精确的数据,或者待中国空间站工程巡天望远镜上天,并对大样本宽距双星给出高精度的天测之后,科学家们才能给出令人信服的结论。

在极弱的引力场下牛顿引力理论是否需要修正,MOND理论是否正确,暗物质是否存在,它的本质是什么,等等,这一系列问题均涉及到现代物理“大厦”的根基,属于国际前沿的重大问题。随着观测技术的不断提升、统计方法的不断完善,我们坚信,在科学家的不懈努力下,这些问题的答案终将水落石出。

UUID: c6d0276b-d64f-4853-ac2c-105fe72bb0cc

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2024/返朴_2024-03-19_暗物质vs修改引力理论,终极对决已经打响?.txt

是否为广告: 否

处理费用: 0.0209 元