数理史上的绝妙证明:柏拉图多面体只有五种

作者: 曹则贤

来源: 返朴

发布日期: 2019-03-22 07:02:00

本文介绍了柏拉图多面体的定义、历史背景及其重要性,并通过欧拉多面体公式证明了只有五种规则多面体,即正四面体、正六面体、正八面体、正十二面体和正二十面体。文章还讨论了多面体在晶体学和拓扑学中的应用,强调了几何学在物理学中的重要性。

柏拉图和开普勒这类人之所以是智者,就在于他们模糊的认识在后来被发现包含着最深刻的道理。

在大自然中,液滴的外观可能是光滑的曲面,小水珠几乎是完美的球形,而晶体的外观常常是由一些平坦的小面围成的。这样的几何形状叫多面体,它的特征包括顶点、边和面。如果多面体是凸的,即往外鼓的,则其顶点数V、边数E和面数F要满足一定关系,V-E+F=2。此乃所谓的欧拉多面体公式。

笔者以为,对于多面体这个公式,引入体数S, 可写为V-E+F-S=1的形式, 注意公式里的几何特征的量,随着几何特征的维度从0开始逐步增加,其前面的+/-符号是交替变化的。这种写法的好处是,可以轻松将该公式推广到其它维度的情形。

如果一个凸多面体的小面是全等的规则多边形,则称为规则多面体。这样的规则凸多面体只有五种,即正四面体、正六面体、正八面体、正十二面体和正二十面体。

柏拉图时期人们就知道这五种规则多面体。在《蒂迈欧》一书中,柏拉图猜测地上的四种元素风、火、水和土以及天上的quintessence就分别对应这五种形状,因此这五种规则多面体又称为柏拉图多面体。具体地,正四面体对应火,正六面体对应土,正八面体对应气,正二十面体对应水,而正十二面体对应quintessence或者宇宙。整个天体为球体。后来,开普勒用它们构造宇宙的模型。

古人虽然感觉到只有五种柏拉图多面体,但却没有证明。关于这个问题,基于欧拉多面体公式,可以得出一个非常简单的证明。注意观察正多面体的边,每一个边都是由两个顶点规定了的,且每一个边又都是由两个面所规定了的。这样,假设正多面体的小面是p-边形,每个顶点连接着q条边,则有pF=2E=qV。

由欧拉公式V-E+F=2,可联立求解得可以得出如下解: p=3, q=3,对应正四面体;p=3, q=4,对应正八面体;p=3, q=5,对应正二十面体;p=4, q=3,对应正六面体;p=5, q=3,对应正十二面体。

关于只有五种凸多面体的证明,当然还联系着别的数学,比如代数方程的解,比如群论。从实用性的角度来看,关于多面体性质的学问关系到对晶体学的理解,因此它是晶体学、固体物理进而材料科学的几何基础。晶体结构可看作是能充满整个三维空间的某种多面体或者多种多面体之组合在空间中的排列。正四面体、正六面体、正八面体,以及由正八面体截去六个顶角得到的十四面体,是晶体结构的主要构成单元。

一般的数学教育内容都会包含简单的欧几里得几何学。那里面的几何形状,大体上都是一些多边形,且是区分形状和大小的。随着人们对几何认识的深入,还发展出了更高深的学问,拓扑学。拓扑学,topology,关切几何体的拓扑性质,其与大小、形状无关而只和topos(可理解为某种相对位置关系)有关。几何学的意义怎么强调都不为过,几何是物理学的语言,甚至有物理学几何化的说法。

拓扑学近年来深刻地影响了物理理论的发展,量子力学、相对论都纳入了拓扑学的语汇。学习拓扑学常被视为畏途,不过若你体会了它的重要性,就不敢过其门而不入了。

UUID: f116f05c-2585-4029-8c94-5ae7d76e9d87

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2019/返朴_2019-03-22_数理史上的绝妙证明:柏拉图多面体只有五种 贤说八道.txt

是否为广告: 否

处理费用: 0.0050 元