许多人都以为数学知识是确定无疑的,数学大厦是坚不可摧的。其实,与其他任何一门学科一样,数学的发展也充满了波折。25个世纪以来,数学史上发生了多次危机:非欧几何对欧氏几何的冲击、无理数的发现及数的扩张、微积分带来的分析困境、集合论悖论和其他逻辑悖论出现……数学大厦一次次面临倒塌的危险。
美国数学史大家、数学哲学家莫里斯·克莱因在《数学简史:确定性的消失》一书中,探讨了数千年来数学在直觉、逻辑、应用之间穿梭往复的炫目旅程,再现了真实数学的发展过程,阐述了数学的起源、数学的繁荣和科学的数学化,直到当代数学的现状:数学与确定性(逻辑,严密性,完备性)渐行渐远。透过数学史上的大事件,克莱因一步一步剥开数学思想与数学思维变迁的脉络。
在不牺牲准确性的情况下,克莱因几乎没用公式,就用最短的篇幅讲述了数学2500年惊心动魄的历史。
1930年时数学基础的状况可说是差强人意。已知的悖论已经被解决,但是两个问题继续困扰着数学界。第一是建立数学的相容性,这恰恰是希尔伯特在1900年的巴黎讲演中提出的。虽然已知的悖论已经解决,可再次发现新悖论的危险依然存在。
第二个问题被称为完备性,一般而言,完备性意味着任何数学分支的公理对于判别涉及该分支的概念的所有有意义的断言的真伪性是充分的。完备性问题就是一个合理的欧氏几何的命题,例如“三角形的三条高线交于一点”这个命题能否根据欧氏公理证明或证伪。更进一步,在超限数域中,连续统假设又是一个例子。完备性要求根据构成超限数理论基础的公理证明或证伪该假设。
类似的,完备性要求根据数论中的公理证明或证伪哥德巴赫猜想:任一偶数都是两个质数之和。事实上完备性问题包括了许多其他的命题,对它们的求证向数学家们所发起的挑战已逾几十年甚至上百年。
对于相容性问题和完备性问题,几个学派采取了稍有不同的态度。罗素实际上放弃了他的逻辑方法中使用的逻辑公理是真理的信念,并且还承认了他的约化公理的人为属性。他的类型论避免了已知的悖论,而且罗素确信它能避免所有可能的悖论。
然而,信心不能代替证明,罗素没能解决完备性问题。尽管集合论公理化主义者自信他们的方法不会引起新的矛盾,但这一信念缺乏证据。同样,人们关注的主要不是完备性,直觉主义者对相容性问题漠不关心。他们认为被人类思维所承认的直觉具有自然而然的相容性,形式论的证明是不必要的,也与他们的哲学不相干。至于完备性,他们的看法是,人类的直觉是如此的强有力,以至于能判断绝大多数有意义的命题的真伪,即便有个别例外。
与之相反,由希尔伯特领导的形式主义学派并没有自鸣得意。在20世纪的最初几年,希尔伯特为解决相容性问题做了一些初步的工作。此后,在1920年,他的研究工作又一次回到了相容性和完备性问题。在他的元数学中,希尔伯特找到了相容性的证明方法。对于完备性,在1925年的论文“论无限”中,他再次从根本上对1900年巴黎演讲所表明的观点进行了阐述:“每一个明确的数学问题必须能被正确地解决。
”在1925年的文章中,他进一步强调了这一观点:“作为可以用来处理基本问题的方法的一个例子,我更乐于选取一切数学问题均可解决这样一种观点。我们都相信这一点,吸引我们去研究一个数学问题的最主要的原因是:在我们中间,常常听到这样的呼声,这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有什么不可知!”