物质通常具有气态、液体、固态等物态,不过在极端低温下会出现奇异的新物态,对称性及对称性破缺并不能刻画它们的性质。于是物理学家提出拓扑序来描述由量子效应主导的物态。拓扑序是看待世界的一种全新视角,它还可以描述空间的内在结构,将空间看作由许多量子比特构成的系统。而这些纠缠的量子比特可以将相互作用、物质和信息全部统一起来。
拓扑学曾经只是纯数学的一个分支,它研究不同形状在连续变化下保持不变的性质。一个经典的例子是对于只有一个洞的物体,比如环面和带把手的咖啡杯,二者可以在不撕裂的条件下彼此光滑地转换。不过长期以来,拓扑学的概念在研究物性中也发挥着作用,例如拓扑可能会决定系统中某些无法抹除的组成部分的特殊构型。
尤其是在过去几十年,物质的拓扑性质已经成了物理研究中的一个主要课题,这反映在1985年和1998年的诺贝尔物理学奖中,它们都被授予了与量子霍尔效应有关的发现。在量子霍尔效应中,霍尔电导的值精确等于量子化电导e2/h的整数或分数倍,这里的量子化电导是与电子电荷量有关的一个特定数值。无论我们如何改变材料,譬如添加杂质,这种量子化的行为都会保持不变。
人们意识到,一些材料中电子结构的拓扑性质为材料赋予了特殊且或许有用的性质。例如,一些研究者认为,“拓扑物质”也许可以提供量子计算中所需的量子比特,而且这种量子比特能够抵抗环境中的随机噪音。
在过去几十年的时间里,麻省理工学院的文小刚一直在思考基础物理学中“拓扑序”的概念。时空的基础结构中的拓扑如何产生基本粒子和基本相互作用?这个问题的答案与凝聚态物理中的拓扑相有关,而这也揭示出物理学中一种新的统一原理。
文小刚认为,自然中存在着很多种不同的物态。根据前苏联物理学家列夫·朗道的相变理论,不同物态之所以不同,是因为它们的粒子组织结构具有不同的对称性。然而,上世纪80年代,人们研究了手性自旋液体和量子霍尔液体这两种量子效应主导的物态,结果发现,这些物态都具有完全相同的对称性。对称性不足以解释它们的区别,需要一种新的组织规则将它们区分开,这就是拓扑序。
尽管提出拓扑序理论是为了理解新的量子物态,但它或许也能描述空间的内在结构。这是因为空间可以被看作是由许多量子比特构成的系统。当这个量子比特海具有某种合适的拓扑序,也就是说当这些量子比特以某种特定的方式组织起来时,它们的涨落和它们拓扑序中的缺陷能够分别产生光子和电子,以及所有其他的基本粒子。通过这种方式,我们就得到了相互作用和物质的统一。
最近几年,很多非常不同的现象都被称为是“拓扑的”,这也带来了一些混淆。在一篇叫做《量子拓扑物态大观》的文章中,我尝试去澄清这个术语。量子自旋液体和量子霍尔液体具有拓扑序,因为它们具有对抗局域扰动的稳定特性。而拓扑绝缘体就很不一样。它们的性质在一些局域扰动下不能保持稳定。因此它们的“拓扑”和拓扑序的“拓扑”含义不同。
中国的物理学家和学生对拓扑物质有着非常强烈的兴趣,或许比世界上其他国家更甚。在理论方面,向涛教授的研究组发展了一套领先的张量网络方法,非常适合对拓扑序的数值研究。翁征宇教授发展了一套自旋液体的规范理论方法,同时也训练了一批世界级的博士研究生,他们成为了研究拓扑物态的重要推动力。