量子霍尔态是在二维运动的电子在极低温强磁场下所形成的一种非常特殊的物质态。在这一状态中,所有电子都相互锁住,只能遵循一个固定的模式跳集体舞(这一固定模式的集体舞就是所谓的拓扑序)。因为运动模式被锁住固定,所以量子霍尔态没有内部自由度。但二维量子霍尔态的一维边缘可以有运动的自由度,它就像水面上起伏运动的波。二维量子霍尔态的一维边缘波非常特殊:它只能沿着边界向一个方向跑。
这一性质被称为手性(也叫手征)。最简单的量子霍尔态,其边界只有一支手性波(即一种波动模式),由一个玻色场描述。比较复杂的量子霍尔态,会有好几支手性波,由几个玻色场描述。1991年我和Moore-Read用两种完全不同的方法独立发现了一种新的量子霍尔态(我的文章还早发表几个月),其边界只有半支手性波,由一个马约拉纳费米场描述。也就是说这半支手性波对应于一维手性马约拉纳费米子。
我们当时还发现,在边界上的手性马约拉纳费米子意味着,在这种量子霍尔态的二维体中会出现一种全新的粒子,它带有非阿贝尔统计。也就是说这种新粒子,它既不是玻色子,也不是费米子,甚至不是带分数统计的任意子。它是一种更新更奇怪的粒子。这种非阿贝尔粒子有不受环境干扰的内部自由度,可用来存储量子信息,而不会由干扰引起信息丢失。因此我们可以用这种非阿贝尔粒子来制造拓扑量子计算机。
由于它的重要性,目前有一些凝聚态物理学家在疯狂的搜寻这一新的非阿贝尔粒子。在讨论手性马约拉纳费米子的实验之前,有必要先介绍一下作为基础的量子反常霍尔效应(QAHE, Quantum anomalous Hall effect)。当然,理论上QAHE体系就是陈数非零的二维能带绝缘体,所以霍尔电导是量子化的平台。
然而在实际的QAHE材料体系中,由于QAHE是伴随着铁磁态出现的,在扫场过程中会伴随磁畴的出现,从而不可避免地带来额外的复杂性。从2013年到现在各实验组的QAHE实验观测,基本上可以分为两类:第一类QAHE转变的特征是随着外磁场转向,霍尔电导的平台直接从1跳变到-1,中间不产生霍尔电导为0的平台,如图1(a)所示。
这种转变过程往往发生高质量的,空间均匀性非常好的样品中,样品内的磁畴相当大,可以在一个很小的外磁场窗口内,直接从正向饱和磁化翻转到反向饱和磁化。而第二类的QAHE转变则如图1(b)所示,随着外磁场的转向,霍尔平台先从1转变为0,然后再从0转变为-1。第二类QAHE转变的重要特点,是在转变过程中产生了一个额外的零霍尔平台。
这个零霍尔平台可以有多种理论解释,但本质上都是由体系内部磁化强度的空间不均匀性导致的,几种不同机制的区别只是在于主要的不均匀性发生在z方向,还是xy面内。对于大部分样品来说,这个零霍尔平台的起源可以归结为面内的磁畴结构导致的界面态渗流相变。