引力与强力的平方?

作者: 董唯元

来源: 返朴

发布日期: 2021-05-13 08:00:00

理论物理学家在量子引力的研究中,发现引力与强作用力之间存在数学上的等价关系,即引力子与胶子的平方在数学结构上等价。这种关系不仅限于引力与强力,还广泛存在于引力理论与其他力之间,如电磁力、弱力等。这一发现为量子引力的探索提供了新的视角和工具。

在量子引力的道路上,理论物理学家发现了引力与其他相互作用的有趣关系。数学不仅是物理的描述语言,还能反过来引领物理理论的探索。许多新思想的火花,都发生在物理学家们反复摆弄数学公式的时刻。近几年,高能物理领域的几位物理学家也是在处理繁杂计算的时候,意外地发现了引力与强作用力之间,似乎存在某种深刻的联系。

粒子的散射幅计算,是高能物理领域最为艰巨的任务,没有之一。

散射幅计算的核心,是一个名为“S矩阵”的抽象数学对象。它就像一个承载着所有相互作用关系的魔盒,周身布满了小窗,我们从某个侧面打开某扇窗,就能看到相应的粒子对撞场景预览。2008年,三位研究者发现,从某个特定角度望向强相互作用的小窗,会看到一个非常便于计算的精简模式。

这三位物理学家分别是,加州大学洛杉矶分校教授Zvi Bern,美国西北大学教授John Joseph Carrasco和瑞典乌普萨拉大学教授Henrik Johansson。他们发现的这个特殊简化关系,就以三位教授的名字命名为“BCJ对偶”。

这个对偶关系本身,是高数里常见的雅克比恒等式一样的数学关系。三位研究者敏锐地发现,这个简化之后的数学形式,竟然意外地将两种看似无关的粒子联系在了一起:引力子=胶子²。其中引力子是传递引力的粒子,胶子是传递强相互作用的粒子。一个质子或者中子里的那三个夸克,之所以能够紧紧地抱在一起,就是因为他们之间通过交换胶子才形成了强烈的吸引。

而等号的意思,是指数学结构上的等价。也就是说,如果把胶子的作用反复使用两次,就会得到一个与引力子单次作用时完全相同的数学式子。这种数学形式上的“撞脸”,几乎不可能是巧合。因为这些计算所涉及的式子都极为冗长,随便一个普通计算就有10^20项以上,复杂的甚至能达到10^60项之多。

另外,从一些已知的物理事实中,我们也能隐约感觉到二者之间似乎可以建立起这种联系。比如,胶子的自旋是1,而引力子的自旋是2;强力是矢量,而引力是张量。这些倒是蛮贴合二者间的平方关系。更有趣的是,以宏观经典理论视角来看,引力因物质的质量而生,同时微观粒子物理的视角又告诉我们,物质中的质量其实主要源自胶子所承载的强相互作用。

当然,这些感觉都不是实锤论据,只能作为检验猜测合理性的初级线索。不过,对一心渴望探索量子引力的物理学家来说,这些线索足以引起强烈的好奇和研究动力。在后续的研究中,人们发现这种数学等价性不仅存在于引力与强力之间,而是广泛地存在于引力理论和其他力之间:引力=杨米尔斯规范作用1 杨米尔斯规范作用2。

而杨米尔斯规范理论,正是描述标准模型中所有基本粒子的基础框架。除引力之外的其他所有作用——电磁力、强力、弱力都已经完美地统一在这个框架之内。需要说明的是,杨米尔斯规范理论是比现有标准模型更基础的理论。如果哪天宇宙暗物质的头号候选人——轴子——真的被发现,那么标准模型将不得不做出修改,但轴子的存在却不会动摇杨米尔斯规范理论框架。

引力与其他规范作用间这种颇为炫酷的关系,却有个土味十足的名字——“double copy理论”。鉴于理论物理学家都如此不重视命名的品味,我也就不费力为它琢磨合适的中文翻译了。目前,double copy理论只是在数学上建立起了引力与其他规范作用力之间的一系列形式联系,但其背后的物理实质,还有待理论研究者们进一步挖掘和澄清。

UUID: 36a7358f-e1a3-4e59-9cf4-44802f3f6c4d

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2021/返朴_2021-05-13_引力=强力的平方?.txt

是否为广告: 否

处理费用: 0.0045 元