庞加莱是当代法国伟大的数学家、物理学家、哲学家、工程师,被誉为人类最后一个啥都懂的人,其学问达到了现象级的深度。庞加莱是一个自成一类的科学家,主导了他所处时代的数学与物理,对所有他投身其中的领域他都做出了重大贡献,其对相对论和量子力学的贡献都是奠基性的、一锤定音式的。庞加莱还是哲学家,其实用偶然主义对科学实践具有普遍的指导意义,而他的那些普及科学的优雅文字将持续影响着这个世界。
物理学有一个分类法是按照研究对象的多少划分的,包括单体问题、两体问题、少体问题和多体问题。近些年来,很多人的聊天词汇里多了个三体的概念。三体问题(three-body problem),一开始是个特别自然的天体物理问题:太阳-地球-月亮这样的靠万有引力相互作用的体系是否是稳定的?这是个标准的杞人忧天。
三体的动力学问题没有闭合形式的通解,对于一般的初始条件都会表现出混沌行为(chaotic behavior)。混沌从此成了一个重要的交叉学科概念。这个概念出自法国伟大的数学家庞加莱的工作。1890年,庞加莱在一篇长达270页的论文里为三体动力学问题的解决提供了系统的思想和数学技术,还让混沌等概念成了社会性概念。
提起数学家,有个关于数学家判据的说法和庞加莱引理有关,非常有趣。
如果有一个人睡得迷迷瞪瞪的,你一脚把他踹醒,问“什么是庞加莱引理?”答不上来的,肯定算不上数学家。庞加莱引理(Poincaré’s lemma)有如此高的地位,可用作数学家的判据,估计会让许多人感到惊讶。庞加莱引理谈论的是开单位球上微分形式的零调性质。
若U是Rn空间的开球,Ek(U)是U上的微分k-形式(differential k-form)空间,则对于k≥1,存在线性变换,使得,其中d是外微分符号。庞加莱引理的推论之一是,若ω是开单位球体上的一个微分k-形式,且dω=0,则存在一个微分(k-1)-形式,有dβ=ω。在矢量分析或者微分拓扑中,外微分为零的形式,dω=0,是闭合形式;而一个微分k-形式如果是外微分,ω=dβ,则称其是精确形式。
一个精确形式肯定是闭合的,但逆定理不一定成立。在可收缩的域上,庞加莱引理保证闭合形式也必是精确的。这部分对于未学过高等数学的读者来说有点难度,可以跳过。读者需要记住的是,这个庞加莱引理的推论在物理学上有诸多应用,(引力、电磁的)势理论,Stokes theorem,这些物理学至关重要的内容都与其有关。
一般的物理教科书不走高深路线,不太提这些内容,但如果你熟悉这些内容,你在学数学物理的时候容易有豁然开朗的感觉。
庞加莱被誉为人类最后一个什么都会的学者(the last universalist),一个全面型的专家(universal specialist),他对数学、物理以及哲学的贡献是全面的、独特的。庞加莱是自成一类的学者。对庞加莱,笔者怀有无限的崇敬。