千禧年大奖难题的诞生与克雷数学研究所的成立密不可分。1998年4月15日,克雷先生首次提起了创建一个软件基金会的想法,他部分拥有一家濒临倒闭的公司,正适合改建成基金会。我略作沉思提出了自己的建议,倘若你愿意为数学作一番事业,我必鼎力相助!克雷先生眼眸一亮,他素来是科学和教育的大力赞助者。大约六周以后,他作出重大决定:另外设立一项基金会,专门支持数学。
经过深入的思考和充分的准备,我提交了十项可行的项目方案,包括其中的第八项——“千禧年大奖”计划。当时,“千禧年”这个话题在全球如火如荼,我对这一计划青睐有加。而阿兰·孔涅、安德鲁·怀尔斯和爱德华·威滕这几位享誉世界的数学家们也陆续加入了这项事业。
1999年5月10日是看似寻常却又无比奇妙的一天,大约450名数学家相聚在麻省理工学院,而克雷数学研究所的落成典礼也在节日般的气氛中举行了。
当天,著名艺术家兼数学家海拉曼·弗格森先生亲手揭开他的杰作——一个阴雕的“8字结”雕塑,它由花岗岩制成,足足有半吨重。在纽结理论中,“8字结”是一个非常重要的范例,因而它被定为了克雷数学研究所的标志。克雷数学研究所的主要目标和宗旨为:促进和传播数学知识;在广大科学工作者中宣扬数学领域的新发现;鼓励具备天赋的年轻人从事数学职业;以及对数学研究中的非凡成就或巨大进步进行官方认证。
“千禧年大奖难题”的诞生还与一百年前珍贵的历史遥相呼应。1900年8月8日,希尔伯特在巴黎举行的第二届国际数学家大会上宣布了十个问题,并在1902年正式出版了二十三个问题,它们被合称为“希尔伯特问题”,引领了二十世纪数学的诸多研究方向。
需要说明的是,“千禧年大奖难题”的设立初衷与“希尔伯特问题”截然不同,并非是为了预测或影响新世纪数学的发展倾向,而仅仅是为了彰显一些未解的难题,以吸引大众对数学的关注。当然,我们希望把2000年春夏和法国巴黎作为这些难题正式公布的时间和地点,以此来表达对希尔伯特这位数学巨匠最诚挚的敬意。
七个难题如下,顺序依照难题英文名称的字母序排列,括号中所列的是写下难题之具体陈述的作者姓名:
(1) Birch-Swinnerton-Dyer 猜想 (Andrew Wiles)
(2) Hodge 猜想 (Pierre Deligne)
(3) Navier-Stokes 方程解的存在性与光滑性 (Charles Fefferman)
(4) P/NP 问题 (Stephen Cook)
(5) 庞加莱猜想 (John Milnor)
(6) 黎曼假设 (Enrico Bombieri)
(7) Yang-Mills 规范场存在性与质量间隙 (Arthur Jaffe 和 Edward Witten)
这七个难题中,黎曼假设是唯一一个在“希尔伯特问题”里就出现过的,已历经一百多年却仍然巍然屹立。它在山顶的风景如此令人迷醉,山间的雾霭却乱人眼眸,人们手执大斧披荆斩棘,却始终无法找到一条通往山巅的清晰途径。
需要特别强调的是,这是七个(当时)未解决的重要问题,但并非“最”重要。无论是揭开古老的未解之谜,还是发现全新的研究方向或领域,都无比艰难。由前者所取得的成果较易为当世之人所敬仰,而后者的成就往往需要经过更多的时间积淀才能被世人所理解和接受,两者都难能可贵。
关于获奖的规则细节,以下几条是原则性的:获奖者必须证明或证否其中一个难题;解答不能直接提交给克雷数学研究所,需在正式的学术期刊上发表;克雷数学研究所将在解答被发表两年之后启动审查程序;对于合作取得的成果,或是重要的先验想法,时任董事会将根据科学顾问委员会的建议来决定他们应分享的荣耀。
七个大奖难题之一——庞加莱猜想——如今已被完全解决,这是一件在数学界耳熟能详的传说。
在2002和2003年,佩雷尔曼博士在预印本网站张贴了三篇论文宣称解决了庞加莱猜想的推广形式——瑟斯顿猜想。2003年在纽约州立大学石溪分校,我曾与他聊了一整天,这一过程令人陶醉。我告诉了他克雷数学研究所奖金的事,而他对此仅有的评论是:“金钱很危险!”经过数个数学研究团队的补充和验证,到2006年时数学界已认可佩雷尔曼博士的工作无显著漏洞。
这时佩雷尔曼博士不仅放弃了百万美元的奖金,还拒绝了包括菲尔兹奖在内的所有奖项。他甚至辞去了斯捷克洛夫数学研究所的工作,与母亲一起过着贫困的生活。在2008年,我再次尝试联系他,并没有成功。听说他最大的人生乐趣是听音乐,并与音乐家们交往。