水是最常见但也是最神奇的物质。哪怕是一滴水,它只有千万亿分之一升,却能加速化学反应,所展现出的催化效应令无数科学家瞠目结舌。这就是近些年化学领域前沿热点——水微滴研究。目前水微滴在有机化学合成、固氮固碳等领域显示出了巨大的应用潜力,然而其加速反应的机理却不明确,甚至存在很大争议。
水是维持生命的必要物质。工业以及农业生产中,水亦是不可或缺的重要原料;化学实验室中,水也是重要的溶剂。
除了以上所需的大量水溶液,千万亿分之一升(立方微米)级别的水也广泛存在于自然环境里,如大气中的水蒸气。令人惊讶的是,近年来随着化学研究的深入,人们发现体积如此之小的“水微滴”(water microdroplet)能够将一些化学反应的速率提升约10倍甚至1000000倍!关于水微滴的研究迅速成为化学领域的热点。
水微滴是指体积很小的水滴,其直径范围约为1微米至1000微米;它的物理构成上涉及由水分子构成的液相,外围包裹微滴的气相(通常为空气)以及气液两相所形成的气-水界面。虽然微滴研究在化学合成领域较为新颖,但水微滴在日常生活和其他科学研究中并不罕见。家庭中所使用的超声波加湿器就是一个良好的水微滴发生器,水在高频物理振动下被打散成为直径1-10微米的水滴,这些水微滴在空气中扩散从而增加了室内的空气湿度。
水微滴也广泛存在于大气层的云和雾中,其物理化学性质对于研究大气反应至关重要。长期以来,由于体积小、所能包含的反应物有限,以及需要灵敏的测量手段等原因,水微滴直到近期才在化学合成领域崭露头角。
水微滴在化学领域的研究最早可以追溯到上世纪70年代。随着高精度分析测量仪器的发展,特别是高分辨率的质谱仪(如离子回旋共振等)逐渐被应用于化学领域,高精度测量化学反应速率得以实现。
作为相关研究的先驱者,美国化学家John Brauman利用质谱仪测量了大量有机分子的反应速率常数,发现许多气相反应的速率远高于相应的液相反应。
到了80年代,电喷雾电离(Electrospray Ionization)技术诞生,利用高电压将液体电离成带电微滴,可产生包含有特定反应物带电离子的水微滴,并可直接被送入质谱仪中进行分析,其发明者美国化学家John Fenn也因此获得了2002年的诺贝尔化学奖。
以质谱仪为中心,研究者从上世纪90年代开始对离子反应进行研究,探索其在医药、生物化学和有机化学等领域的应用。
在这期间,他们测量多种化学反应在水微滴的反应速率,初步显示了水微滴在化学合成领域的潜力。2011年,他们创造性地利用酮类固醇和Girard试剂T的有机反应,首次清晰地展示水微滴的加速效果。随后,众多学者开始尝试将这一特性应用在化学合成中:他们的研究表明,许多化学反应在微滴中的反应速率远大于其在水溶液中对应的速率,加速倍率最高能达到106量级。随着研究的不断深入,微滴化学的潜力被越来越多的学者发现。
经过短短不到十年的发展,围绕水微滴加速化学反应展开了机理解释、反应类型、潜在应用等多方面的深入研究。同时,微滴化学的研究也促进了人们在固氮、二氧化碳转换和生命起源等重要问题的理解,并有望探索新型的反应路径,降低反应的活化能。通过利用水微滴,部分化学反应需要的实验室条件从严苛的高温高压转变为常温常压,在大大降低化学反应所需能耗的同时,提升了反应的安全性,使得化学合成向着更清洁、高效和安全发展。
研究发现水微滴可以对相当多种类的化学反应进行较大幅度的加速。例如,对Girard试剂T与酮类固醇等羰基化合物生成对应腙类化合物、Michael加成反应、脱水反应、席夫碱合成等加成消去反应;胺和硫化物等氧化还原反应;以及Mannich缩合等一系列有机合成反应。金属离子催化的蛋白质折叠与反折叠动力学过程也被发现在水微滴中显著加快。
水微滴在这些微纳尺度的化学反应中发挥了类似催化剂和活性中心的作用,成为了研究人员探索新型化学反应路径和研究快速微合成等方面的有力工具。
关于生命起源的问题,水微滴研究带来了新的见解。生命起源的基本理论认为,最初海洋中存在的肽、核苷酸等基本的生物分子是生物起源的必要条件。
地球上的生命起源于水,然而在生命诞生之前,地球表面被海洋所覆盖,环境中过多的水分子可能阻碍氨基酸之间的脱水反应,从而影响了肽的生成。生物体内的蛋白质合成依赖于各种生物酶催化功能,而最初在缺少酶的情况下,氨基酸是如何在自然环境下通过非生物方法转化成简单的肽分子是生命起源研究的关键问题。
微滴化学的近期研究成果在固氮、碳封存等领域也展现了神奇的作用。
固氮,是指将分子氮(N2)转化为氨或其他含氮化合物(如尿素[CO(NH2)2])的过程。固氮过程所产生的氨、尿素等化合物后续可被加工制作为化肥,对农业生产具有重要作用。虽然空气中富含氮气(N2),但N2分子中的两个N原子形成了非常稳定的N≡N三键,在通常条件下的反应活性很低。
工业上大规模生产氨的所采用的方法被称为哈伯(Haber–Bosch)法,需在高温高压的条件下,借助铁基催化剂将N2和H2转化为氨。据统计,由这一方法所产出化肥所促进的粮食产量养活了全世界约50%的人口,其发明者德国化学家哈伯(Fritz Haber)由此获得了1918年的诺贝尔化学奖。
然而世间安得双全法,这项发明于100多年前的“古老”方法完美符合了大众对化工生产的刻板印象——实用、有效但高风险、高污染。据调查分析,每年仅合成氨反应一项便占了全世界总能源消耗的2%之多,其向大气释放的CO2约为总排放量的1%。能够大规模应用的绿色、高效的固氮方法,长期以来都是整个人类社会的迫切期望。对此,近期化学界相关成果有望提供“水微滴”版本的解决方案。
要想真正了解水微滴加速化学反应的原因,我们必须把握并构建现实的物理化学体系,涉及到微观尺度下的水化学及界面科学。通过对比水微滴与液相水,我们可以发现其中端倪。首先,水微滴与体相水最直观的区别就是由于液体直径减小所带来的面积-体积比的增加,即单位体积水所对应气-水界面面积的增加。在实验中改变水微滴直径,观察反应速率的变化可以确定水微滴中气-水界面对反应的影响。
水微滴另外一个重要的特点是在其表面形成的双电层,以及由此在气-水界面极薄的1-2埃(1埃=10-10米)内产生的强电场。由基本的静电场知识可知,电荷在电场内会受到电场力的作用,力的大小与电场强度成正比。当所处环境的电场强度足够大时,分子中的化学键会发生活化甚至解离,带电离子也可能会在电场作用下发生重排,从而促进相关化学反应的进行。
换言之,只有当水微滴表面的电场足够强时,水微滴才有可能通过电场的作用来加速反应。因此,水微滴表面电场强度的实验测量与理论计算对于水微滴加速化学反应的机理研究至关重要。
尽管实验和理论的研究给出了一致的水微滴表面电场强度,然而,表面电场的建立归根结底是由于水微滴表面正负电荷分布所形成的双电层。这些正负电荷的来源和存在形式还具有一定的争议,主要分为水分子电离和氢键电荷转移两种观点。
水分子电离即认为在水中所存在的H+和OH-离子是由H2O分子自发电离而成。然而,近期关于水结构的研究揭示了在微滴表面,相比于低概率(~0.0001%)的水电离,氢键供体中的电子有2%的几率转移到受体中,形成带电水分子对,即H2O + H2O→H2O+ + H2O-。根据电荷转移的概率,可以推算出每个氢键的平均电荷转移量为±0.02e。
除了水微滴在气-水界面处存在的强电场外,还存在其他加速化学反应的可能机制:1)更低的溶解能。理论认为反应物在水微滴中发生时只需要在气-水界面处部分溶解,从而降低了反应物完全溶解的能垒。2)反应物分子在气-水界面的有序排列。实验和理论研究都指出,由于水微滴表面的电场,部分反应物离子或中间体会沿特定方向形成有序排列。
反应物分子的有序排列会降低反应初态的熵并相应地增加吉布斯自由能,从而减小整体反应的自由能变化。3)水微滴的快速蒸发。随着水微滴在空气中的快速蒸发,水微滴体系中的反应物浓度会显著提高,从而使化学平衡正向偏移。
微滴化学自诞生至今不过十余年,却已迅速成为化学界的焦点。其研究范围从最初的分析、合成迅速扩展到生物、医药、能源、催化等多个领域和学科。
尽管水微滴的应用前景广阔,但其微观作用机理仍需深入研究和探讨。此外,虽然研究发现水微滴在温和条件下可加速多种化学反应,但这些反应大多数属于酸/碱催化,或者反应物含有氨基、酮类固醇等极性官能团。对于非极性分子的反应,水微滴没有展示出明显的加速效果,譬如非极性分子3,5-hexadienyl acrylate ester的Diels–Alder反应,实验显示大多数反应物剩余。
从应用方面讲,难以大规模产生小体积的水微滴也是其面向实际应用的障碍之一。