临界现象

作者: 刘一涵、张一等人

来源: 返朴

发布日期: 2022-11-15 08:00:56

本文纪念法国物理学家查尔斯·卡格尼亚德·德拉图发现临界现象两百周年,详细介绍了临界现象的定义、历史背景、德拉图的生平及其重要实验,以及临界现象在现代物理学中的意义和发展。

纪念法国物理学家查尔斯·卡格尼亚德·德拉图发现临界现象两百周年。

什么是临界现象?其实相变与临界现象是一码事,分开称谓不过是物理学史上的一个误会。为了具象地表述相变和临界现象,我们以生活中习以为常的水为例,作一个简要直观的说明。所谓相变,援引大部分教科书的说法,就是物质——例如水——从一种(聚集)形式到另一种(聚集)形式的变化。

人类知道水存在气、液、固三相可以追溯到约4000年前中国和古埃及的历史记录,但要说对相变真正有所认识,却还是最近半个多世纪的事。已故著名统计物理学家卡丹诺夫曾以漂浮在大海中的冰山为例形象地说明水的不同相共存:大海是液态的水,它包围着冰——即固相的水。微风吹拂着云彩,空气中的水汽同时与固相和液相的水接触。

要研究某种物质的相变,一个基本任务是测定其相图,即找出在给定的热力学参量——对于“简单”热力学系统通常是温度T、压强P和体积V下——该物质处于什么相,并确定不同相之间的边界。例如,图显示了压强-温度(P-T)平面内水的相图,其中明确了水在不同温度和压强条件下的固、液、以及气三相,以及任意两相之间的边界。接近图中间的黄点称为三相点,顾名思义,是上述三相的交汇点。

从三相点出发,沿着气液分界线“上行”,它并不是无限延伸的,而是停在图中的红点位置,此即临界点。对于水而言,临界点处对应的热力学参量的数值是:临界压强Pc = 22.09 MPa;临界温度Tc = 374.14 °C (647.3 K);临界(比)体积vc = 0.003155 m3/kg。所谓“临界点”,是指超过该点之后,水的气态和液态的差别不复存在,询问水此时是气态还是液态不再有意义。

因此,以临界点为界,其上方的区域内为超临界流体,在那个区域,水还会表现出更多新的特点。

虽然临界点在压强—温度相图上只是一个点,但是临界点附近发生的物理现象却十分丰富——统称为“临界现象”。一个典型的例子就是所谓的“临界乳光”:原来透明的气体或液体,当其热力学参量在接近临界点时,它就变得浑浊起来,并逐渐呈现一片乳白色的现象。由统计物理知道,这是由于临界点附近的涨落很大,对光的散射极其强烈而导致的。这可以通过激光穿过处于临界点的相分离散射而观察到。

此外,系统在临界点附近还有其他一些特有的物理现象,如体系的比热在趋近临界点的过程中不断增加,在临界点处比热系数与压缩率趋于“发散”(无穷大)等等。也许可以说,临界现象的发现始于好奇心。历史上,法国物理学家查尔斯·卡格尼亚德·德拉图于1822年首先在实验当中发现了临界现象。很多人也许并未意识到,今天距离他的发现已经过去了整整两百年!两百年间,物理学发生了翻天覆地的变化。

而对临界现象的研究已经发展成为现代凝聚态物理学和复杂系统物理学的一个成熟领域,并且还在不断带来新的惊喜。

德拉图的生平简介:最早发现临界现象的查尔斯·卡格尼亚德·德拉图,1777年3月31日出生于法国巴黎,学生时期就读于巴黎综合理工学院及工程地质学院,此后担任国务委员会的审计员,巴黎城市特别项目主任等公职。同时他又是一名多产的科学家和发明家。

除去发现临界现象,从力学到声学,再到化学生物学,他在许多不同领域做出了重要贡献。德拉图的学术研究始于力学和热力学领域。1809年他发明了新式热机。在1809年到1815年间,他陆续发明了新式液压发动机、新式气泵,以及热驱动绞车等诸多设备。1819年之前,德拉图一直在改进这些发明的设计。此后德拉图对鸟类飞行和人类发声的物理学产生了浓厚兴趣,开始研究声学和声音的产生机理,并在这个领域投入了大量精力。

值得注意,正是这一偶然地兴趣转向,导致了日后他发现了临界现象。

在1828年到1831年间,德拉图开始研究结晶过程和酸对碳的影响,以及磷、硅及其结晶,甚至砂浆的硬化。在1832年至1835年间,德拉图又对阿基米德螺杆原理在气泵上的应用产生了兴趣。1835年德拉图开始转向酒精发酵的研究。这一工作在1836年到1838年间达到巅峰——1836年底,他发现啤酒酵母中含有一种活性物质。

德国生理学家施万也几乎同时独立得出了同样的结论,但是化学家李比希的批评使得这一观点被推迟了足足20年,直到1857年,法国生物学家巴斯德才再次宣布了这一发现。

德拉图就是在帕潘热压蒸锅的有关实验中发现临界点的存在的。1822年,本来出于对声学的兴趣,德拉图将燧石球放在部分填充了液体的蒸锅中加热。在转动实验装置时,固体的燧石球因为穿过气液两相的界面而产生了水的拍溅声。

德拉图注意到,当实验中温度远远超过液体沸点时,水的拍溅声在超过特定温度后就停止了。这实际上意味着前文提及的超临界流体相的发现。在这个相中由于不存在气液相边界,因此也不存在表面张力。超临界流体也可以像液体一样溶解物质,也可以像气体一样在固体中扩散。目前对于超临界流体的研究仍然是一个重要的方向。

在发表于《化学和物理年鉴》的两篇论文中,德拉图描述了他如何在高压下加热密封的酒精玻璃管。他观察到液体膨胀到大约原来体积的两倍,然后变成了透明的蒸汽,管子看起来像是空的一样。但是当重新冷却时,玻璃管内出现了一团“云”。现在我们已经认识到,这其实就是临界点处临界乳光现象的表现。为了使读者有一个直观的印象,图显示了乙烷的临界乳光。德拉图还注意到,当超过特定温度时,增加压强并不能阻止液体的蒸发。

在随后的另一篇论文中,德拉图想要证明特定的极限温度的存在是一种普遍现象。所谓极限温度,是指在此温度之上,无论压强如何,液体都会蒸发。德拉图在论文中报告了几种物质实验的结果。他通过表面张力为零时液体弯月液面消失为标志,来确定对应的临界温度。德拉图测量了水、酒精、乙醚和二硫化碳的临界温度Tc,发现对应每种物质都确实有一个特定的温度,在该处即使不增加压强液体也会蒸发,而超过这个温度,液体全部蒸发。

德拉图测得水的临界温度约为362℃。考虑到当时的历史条件,这已经是一个颇为准确的结果(现代测量的结果约为374℃)。他在论文中称,这种“特定的状态”:“总是需要非常高的温度,几乎与管道的容量无关”。

许多德拉图的同时代人并未意识到他的发现的重要意义,认为这一结果仅对德拉图实验所用的物质才成立,而非普遍现象。但是法拉第显示出他深刻的物理洞察,他认识到了德拉图的工作价值。

1844年,法拉第在给胡威立的信中写道:“几年前,卡格尼亚德·德拉图完成了一个实验,它给了我一个发明新词的机会。”接着,法拉第谈到现代意义下的临界点,“根据连续性定律,我该如何给液体和蒸汽合二为一的点命名呢?卡格尼亚德·德拉图没有命名它,那么我该如何称呼它呢?

”胡威立建议称其为汽化点,或者液体的非液化点,或者德拉图态也可以,法拉第在其后来的论文中用了“卡格尼亚德·德拉图态”和“卡格尼亚德·德拉图点”。1859年7月5日,德拉图在巴黎去世。然而,他的实验发现开启了临界现象研究的古典时期,以及其后的智力探险之旅。

我们今天使用的“临界点”一词是由英国物理化学家安德鲁斯在1869年提出的,他于同年发现了“超临界流体”,并将他的研究成果以《论物质气态与液态的连续性》为题发表在当年的《哲学杂志》上。在这篇著名论文中,安德鲁斯研究了二氧化碳液气两相共存线的压强—体积曲线,进一步阐明了德拉图所谓的“特定状态”——即只有在一定的温度和压强下——气体才可能凝结成液体,或者液体才可能蒸发成气体。

这一点之上是超临界相,在那里液体和蒸汽之间的区别消失了。

1873年,荷兰物理学家范德瓦尔斯首次从理论上清晰地解释了物质气相和液相之间的连续性。范德瓦尔斯在其博士论文中表明,可以引入分子间相互作用推广理想气体定律,并得到了以他名字命名的范德瓦尔斯气的物态方程,定性解释了安德鲁斯的实验结果。当时著名的物理学家麦克斯韦和玻尔兹曼都对范德瓦尔斯的结果给予高度评价。

范德瓦尔斯的工作反过来又启发了他的同胞,荷兰物理学家昂内斯。后者可以据此估计永久气体的临界点,这为氦最终在低温下——约4K左右——液化提供了理论基础。随后低温的获得又导致超导现象的发现。

物质在临界点附近的行为可以通过一系列临界指数来刻划。从范德瓦尔斯物态方程中得到的“临界指数”,实际上是简单的平均场数值,它们并不符合实际测量出来的热力学系统的临界指数值。比利时物理学家沃沙费尔特在1896年首次通过实验发现了这一点。他重新测量了二氧化碳在毛细管中的上升量,并结合新的共存密度实验值对共存曲线数据进行分析,发现同平均场值并不吻合。然而沃沙费尔特的实验结果并未引起当时物理学家的重视。

20世纪30年代,前苏联著名物理学家朗道继续发展了进行系统化平均场处理相变的普遍框架,即朗道连续相变理论,这是相变唯象理论的一座高峰。在另一个关于磁性的研究路线上,法国物理学家居里发现铁磁材料在超过临界温度时会出现退磁现象,这一临界温度通常被称为“居里点”。1895年他注意到气液相变和铁磁相变之间的相似性,提出了临界现象的“普适性”的重要概念。

为了理解磁性起源,1920年德国物理学家楞次引入了一个简单模型——现在通常称为“伊辛模型”。1924年,楞次的学生伊辛在他的博士论文中解决了该模型一维的情况,发现不存在相变,但是他错误地将这一结论推广到二维情形,认为二维伊辛模型也不存在相变。

中间经过派尔斯和克拉默斯及瓦尼尔等人的工作,最终昂萨格在1944年解析地计算了在没有外磁场的情况下二维伊辛模型的比热——昂萨格的这一工作如此重要,以至于杜姆称其为“昂萨格革命”。昂萨格还在1949年给出了未予证明的自发磁化公式,该公式是杨振宁在1952年予以证明的。然而三维伊辛模型的精确解至今仍然没有被求解出来,这对物理学家始终是一个巨大的挑战。

伊辛模型本身的历史足以构成一本专著的内容,我们不再赘述,仅在表中列举一些重要的进展。

在缺乏三维伊辛模型精确解的背景下,人们不得不依赖于数值模拟。杜姆在其1949年的博士论文中提出了高、低温展开方法。而今天被广泛使用的则是迈绰泡利斯和乌拉姆在1949年提出的蒙特卡罗方法。

20世纪60年代,卡丹诺夫和费舍尔意识到相变的一般理论框架必须基于“标度假设”,特别是从标度假设引出了描述接近临界点的各种临界指数之间的“标度关系”。这一思想通过威尔逊于1971年提出的“重整化群”方法,为临界现象完整的理论描述开辟了道路。至此,我们对临界现象的研究和认识达到了一个新的高度,同时又是一个新的起点。

UUID: af33ae9c-5c34-4826-b649-ecec1ee89482

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2022/返朴_2022-11-15_临界现象200周年,是谁最早发现了这个物理现象?.txt

是否为广告: 否

处理费用: 0.0298 元