两个圈外人的前卫实验,引发了一场不凡俗的科学革命

作者: 马修·科布(Matthew Cobb)

来源: 返朴

发布日期: 2024-09-03 09:23:34

在20世纪50年代DNA双螺旋结构被发现后,两位“圈外人”海因里希·马特伊与马歇尔·尼伦伯格通过独特的实验方法,破译出第一个遗传密码,证明了RNA密码子与氨基酸之间的直接关系,为分子生物学实验奠定了基础,并开启了破解遗传密码的激烈竞赛。

在20世纪50年代DNA双螺旋结构被发现后,人们希望知道基因是如何具体表达的,特别是翻译过程中密码子的碱基数量和对应的氨基酸序列。世界顶级实验室中的科学家一度处于迷茫的状态,但在60年代初,两位“圈外人”,海因里希·马特伊与马歇尔·尼伦伯格通过一种独特的实验方法,破译出第一个遗传密码,证明RNA密码子与氨基酸之间的直接关系。

他们的工作为后续分子生物学实验奠定了基础,也同时开启了破解遗传密码的激烈竞赛。

1961年5月27日是个星期六,这天凌晨3点,海因里希·马特伊开始了生物学历史上一场至关重要的实验。马特伊是美国马歇尔 ·尼伦伯格实验室的一名研究人员,32岁,来自德国,正是他即将破解遗传密码。马特伊正和只比他大两岁的生物化学家尼伦伯格一起,在试管中研究蛋白质的合成。

时值深夜,他拿起自己的蛋白质合成混合体系,向不同的试管中加入了两种带放射性标记的氨基酸,苯丙氨酸和酪氨酸,然后又引入了一条仅由一种碱基——尿嘧啶(U,替代的是T在DNA中的位置)——构成的长长的人工合成RNA。因此,这条RNA分子读作“UUUUUUUU……”,并且被称为多聚(U)。马特伊要看的是哪一种放射性标记的氨基酸会被多聚(U)变成蛋白质链,并希望借此读出遗传密码的第一个“单词”。

当实验室的领导戈登·汤姆金斯在上午9:00左右走进实验室时,马特伊已经有答案了。试管中产生了带有放射性的蛋白质,由苯丙氨酸构成。这必然意味着几个U的组合编码的是苯丙氨酸。1961年5月27日,海因里希·马特伊读出了生命之书的第一个“单词”。

尼伦伯格和马特伊的发现彻底改变了对遗传密码的研究,这既是因为它的成功,也是因为它使用了一种打破常规的手段。在这次突破之前,破解密码的征途已经显出了山穷水尽之势。1959年,在布鲁克黑文实验室举行的一场会议上,克里克总结了他所谓的“编码问题的现状”。他将对编码的研究分为三个阶段:模糊阶段(截至1954年)、乐观阶段(由伽莫夫开启)和克里克称之为“迷茫阶段”的“现状”。

迷茫是因为众多的理论模型都吻合不上越发复杂的实验发现。举个例子,一项针对19种不同细菌的研究表明,其DNA中碱基的比例大不相同,但RNA和氨基酸的构成却基本相似。克里克为这项发现概括出了几种“没有吸引力”的解释,包括遗传密码可能并非通用,或者一个生命体中的DNA可能只有一部分编码蛋白质,另一部分“没有意义”云云。

与此同时,仍然有数学家相信仅靠思考就可能破解密码。

就在马特伊完成这项决定性实验的6周前,纽约举办了一场“生命科学中的数学问题”的研讨会,马克斯·德尔布吕克和亚历克斯·里奇这样的分子生物学家也有参加。其中一名发言者是来自喷气推进实验室的数学家所罗门·戈洛姆,他之前和德尔布吕克一起工作过。戈洛姆描述了各种各样与实际的遗传密码可能对应的理论构想,然后总结道:“来看看吧,最终答案有多少会在实验派发现之前就被数学家们提出来,这会很有意思。”

由于完全是圈外人,与过去8年间拼命想解决编码问题的任何研究组都没有关联,尼伦伯格和马特伊解决编码问题所用的前卫的实验方法显得尤为可圈可点。他们不是剑桥、哈佛、巴黎,这个到目前为止做出了所有主要发现的金三角的一员。尼伦伯格实在太没有名气,连参加1961年6月冷泉港会议的申请都被拒掉了。讽刺的是,当分子生物学的圣贤们在对遗传密码侃侃而谈时,尼伦伯格和马特伊正在破解它。

在尼伦伯格早期的职业履历中,没有一样表明他会成为那个破解遗传密码的人。1951年,他通过研究石蛾的生物学获得了理学硕士学位。之后,他更换课题,读了一个生物化学博士。接下来,他在国立关节炎和代谢疾病研究所(国立卫生研究院的一部分,位于贝塞斯达)做了两年博士后。在弗朗索瓦·雅各布和乔舒亚·莱德伯格双双拒绝了他的工作申请后,尼伦伯格成了国立卫生研究院贝塞斯达代谢酶分部的一名生物化学研究人员。

尼伦伯格想要立刻攻关遗传密码问题,这种想法可以理解,但即便如此,他还是尽量将注意力聚焦在自己该做的研究上。他在1959年春天的一条实验笔记中提醒自己:“我主要的目标不是攻克蛋白质的合成,而是做好研究酶诱导的一切准备。

”在1960年春天美国实验生物学会联合会(Federation of American Societies for Experimental Biology,简称FASEB)的会议上,尼伦伯格做了一个有关他在诱导方面的研究的简短报告。

1960年8月,尼伦伯格的想法彻底改变了。查美尼克当时的研究表明,在一个含有尼伦伯格很偏爱的生命体——大肠杆菌的内含物的试管中,蛋白质的合成过程也有可能发生。

尼伦伯格立刻便开始在贝塞斯达尝试这种实验。他在笔记中写道:“赶紧做实验。应该花不了一周就能知道这个体系管不管用。工作、工作、工作。”但它不管用。接下来,他撞上了两次大运:首先,哈佛大学的阿尔弗雷德·蒂塞雷斯和弗朗索瓦·格罗发表了查美尼克体系的一个优化版本,比以前好用得多;接着,一个竹竿身材、早早谢顶,名叫海因里希·马特伊的德国人加入了他的实验室。

马特伊抵达后不久,尼伦伯格就放弃了自己在细菌细胞中观察诱导过程的想法,并投身于用大肠杆菌无细胞体系来探索蛋白质的合成。几周之内,两人就完成了一项技术突破。他们成功制备出了大量的含酶提取物并将其储存起来,这样就不必每次实验都制备新鲜的提取物了。这大大提升了他们能够开展的实验的次数。

到1960年11月底,尼伦伯格的笔记中已经写满了讨论,关于无细胞体系,关于信使RNA的重要性,以及人工合成RNA作为一把“钥匙”的用途,他写道:“你能往体系里灌满信使RNA吗?”这是相当惊人的,因为布伦纳、雅各布和克里克,以及格罗和沃森首次公开使用信使RNA这个说法的那两篇《自然》论文发表于1961年5月,而尼伦伯格写下这些是在他们之前好几个月。

从一方面讲,与研究遗传密码的几大人才中心离得比较远,事后来看也是一项优势。天赐好运,尼伦伯格并不知晓那些研究编码问题的人围绕所谓的“无逗点密码”(commaless code)招致的结构限制展开的争论。

1957年,克里克、莱斯利·奥格尔和J. S. 格里菲斯提出了一个理论,假如密码如很多人所想的那样,是由3个碱基组成的“单词”构成的,并且“单词”间没有碱基行使分词的逗点作用,那么同一碱基构成的“单词”(例如AAA或UUU)就不能存在,因为细胞的分子机器将会不知道该从哪儿开始读取。

1960年底,尼伦伯格和马特伊一直在通宵达旦地研究大肠杆菌提取物中的蛋白质合成。

1月中旬,尼伦伯格的一段笔记被加上了“有想法了,破解密码的方法”的标题,并概括了多聚(A)、多聚(U)、多聚(C)、多聚(G),以及多聚(AG)等的用途。多聚(AG)将包含等量的A和G,但序列未知。尼伦伯格的目标是将多聚核苷酸置于他的无细胞蛋白质合成体系中,并利用其产出物来解读遗传密码的本质,首先是要确定编码一个氨基酸所需的碱基数量。

在1961年2月的FASEB会议上,马特伊和尼伦伯格做了一个简短的报告,描述了他们的体系是如何将14C标记的氨基酸(缬氨酸)安插进一个蛋白质中的。几周后的3月22日,他们将一篇关于这个问题的论文投递到了《生物化学和生物物理研究通讯》(Biochemical and Biophysical Research Communications)。

这份期刊一年前刚创刊,以快发短文的方式来响应这个领域越发激烈的竞争——它用作者们提供的影印好的文稿来代替传统的打字排版,由此加快了整个发表过程。

1961年5月初,尼伦伯格和马特伊决定加入烟草花叶病毒的RNA,观察它们是否能让无细胞体系合成出这种病毒的蛋白质。效果好得就像梦境。根据尼伦伯格在20世纪70年代的回忆,实验结果“超棒……特别漂亮……活性超强”。尼伦伯格意识到,如果要充分利用这一新方法,他们就需要与加利福尼亚大学伯克利分校的烟草花叶病毒专家弗伦克尔—康拉特合作。

5月中旬,尼伦伯格离开实验室,在加利福尼亚大学伯克利分校弗伦克尔—康拉特的实验室待了一个月,进修烟草花叶病毒领域的技能。在贝塞斯达,马特伊开始了一组实验,研究无细胞体系在被加入人工RNA后的反应。

5月15日(这天是他的32岁生日),马特伊开始了一场测试多聚(A)、多聚(U)、多聚[(2A)U](A和U的比例为2∶1,随机排布在整个RNA分子上)和多聚[(4A)U](A和U的比例为4∶1,随机排布)的效用的实验。

5月27日星期六的凌晨3点,马特伊开始了最后的实验。实验用到了10支试管,在他的实验笔记本中标注为“27-Q”。

在3号试管中,他加入了19种未标记的氨基酸和放射性标记的苯丙氨酸,而在8号试管中,是19种未标记的氨基酸和放射性标记的酪氨酸。剩下的8支试管里是各种各样的对照组,以证明其效果确是由多聚(U)和两种放射性氨基酸之一造成的。马特伊让这个混合体系在36℃下温育了一个小时,接着便开始了冗长乏味的任务——分离反应生成的蛋白质并测量其放射性。

尼伦伯格当时人在伯克利,是通过电话听说这项突破的,于6月11日便回到贝塞斯达做实验了。马特伊后来回忆起实验室当时的情绪氛围时说:“当然是很激动啊,因为我们明明白白地知道我们得到了什么结果,而且我们也知道我们希望得到什么结果。”每个人都发了誓要保守秘密——在结果发表之前,不能把这项发现告诉任何人。

1961年8月3日,这两篇论文在国立卫生研究院副院长约瑟夫·斯马德尔的支持下被投给了《美国科学院院刊》。随后,尼伦伯格径直飞往了莫斯科。两篇论文以背靠背的形式刊登在了10月的那一期上,此时,圈内任何有点地位的人都已经知晓了论文那振聋发聩的内容。两篇论文都细致入微地描述了其中的实验流程,它们最大的特点是使用了精心构思的对照实验,这使作者们能够排除其他可能的解释,让自己的结论无可辩驳。

第五届国际生物化学大会于1961年8月10日至16日在莫斯科举行。这是苏联历史上举办过的规模最大的会议——与会者超过5000人,包括来自58个国家的3500名外宾——苏联还专门发行了一款纪念邮票。整个大会有接近2000场报告,高峰时有18个同时进行的分会,不过很多报告都听者寥寥。莫斯科大学的各座大楼中举办了8场大型研讨会,其中一场由马克斯·佩鲁茨组织,名称是“分子水平上的生物学结构和功能”。

和这场大型会议的其他非全体会议发言人一样,尼伦伯格只有短短10分钟的时间来介绍他的发现。报告集中讲解了第二篇《美国科学院院刊》论文的材料,并且在最后一刻修改后,尼伦伯格用他和马特伊在论文中用过的说法结尾:“由此可见,一个或多个尿苷酸残基是苯丙氨酸的密码。”小小的报告厅被一台巨大的老式投影仪占去了一大块,听众席中只有二三十人。

马修·梅塞尔森后来从科学的社会传播的层面解释了人们为何对尼伦伯格的成功普遍感到讶异:“人们的势利眼是很可怕的,这个发言的人得是圈子里的一员并且你认识他,否则他的结果就不太可能是对的。然后出现了一个叫马歇尔·尼伦伯格的哥们儿,他的结果就不太可能是对的,因为他不在圈子里呀。没人愿意费神去听他说话。”

1962年1月,克里克在BBC做了一次访谈,简明地叙述了尼伦伯格的发现的重要性。

在节目结束前,他结合大背景做了总结,并抛出了一些问题,其中的一些我们如今已经知道答案,而另一些则至今仍未得到解答:“我们仍然不知道密码是不是通用的。整个自然界,从病毒到人类,都使用相同的20种氨基酸,但尚不确定它们在所有生命体中是否都由同样的三联碱基来编码,虽然初步的证据表明这很有可能。若是如此,我们应该就拿到了解锁地球上所有生命体分子架构的钥匙。但我想问,在火星上呢?

火星上是否会有生命或者生命的遗迹?那样的话,是否又一样是DNA、RNA和蛋白质呢?或许有同样的语言、同样的密码联系着它们?谁知道呢?”

UUID: 07c9a50b-c72c-465c-92d7-d42737cfd5fc

原始文件名: /home/andie/dev/tudou/annot/微推助手/返朴/返朴_2024-09-03_两个圈外人的前卫实验,引发了一场不凡俗的科学革命.html

是否为广告: 否

处理费用: 0.0158 元