一周科技速览

作者: 小叶、叶译楚、顾舒晨、韩若冰、杨凌、太阁尔、姜小满、夏春秋

来源: 返朴

发布日期: 2020-05-31 09:27:48

本文介绍了一周内的科技速览,包括人工智能通过面相预测性格、中国研究团队发现调节生物钟的分子、心脏内神经系统3D图的绘制、黑猩猩填补人类语音进化证据、南极藻类暴发、人造纤毛的开发、固液界面上质子运动的研究以及用几何和动力学预测细胞发育等内容。

逆转生物钟的神奇分子;固液界面上质子如何运动?

用数学预测细胞发育?

点击上方蓝字“返朴”关注我们,查看更多历史文章。

1. 会看“面相”预测性格的AI

中国有句成语叫“相由心生”,还有一门“面相”玄学。近日发表在《科学报告》的一篇论文中,一支俄罗斯和英国学者组成的联合团队不仅证明了人面部形态和性格之间的相关性,还教会了人工智能通过观察人的正面照,判断其大五人格特质,最终机器“以面识人”的准确率为58%。

研究人员征集了12447名18~60岁的志愿者,总共收集到31367张中性表情或者近中性表情的正面照片,志愿者完成了大五人格特质分数测试(包括开放性、严谨性、外向性、亲和性和神经质)。为了保证实验的准确性,团队将数据随机分为两组,一组是训练数据集(90%),其中的数据被打上标签,用来训练机器的识人能力;另一组则是测试数据集(10%),用来测试机器在接受训练之后的学习成果。

2. 中国研究团队发现倒拨生物时钟的神奇分子

时差难倒,不少人都有过时差反应,表现为睡眠紊乱、精神萎靡、消化不良等。时差反应和我们体内的生物钟有关。大脑内控制生物钟的部分位于下丘脑,是一组叫做视交叉上核的神经细胞核群。通过感知光照,生物钟行驶“内部定时器”的功能,调节我们的作息。当生物钟的内部计时与外界的时间(日出日落)不匹配时,我们就会出现时差反应。

如果能够人为地调整生物钟,也就意味着有可能消除时差反应。近期,一项来自中国研究团队研究发现,虫草素(cordycepin)能够调节生物钟——在小鼠实验中,虫草素将调整时差的时间缩短了一半。相关论文发表在《科学·转化医学》。

3. 首张心脏内神经系统3D图

心脏是人体最重要的器官之一,其正常功能由大脑的神经网络维持,如果神经传输发生异常则将导致心脏病发作、心源性猝死等问题。为了保障心脏的神经传导更加安全,心脏也有自己的第二层保护系统——心脏内神经系统(ICN)。

ICN对保护心脏健康至关重要,但是目前我们尚不清楚ICN的确切功能,甚至不知道它们在心脏中的位置、它们之间如何通信及分子特性等。近日,一个跨学科研究团队以大鼠为模型,首次绘制了心脏神经系统的3D地图,这项突破性的研究发表在《Science》杂志。

4. 黑猩猩填补人类语音进化证据口头语音(speech)的发展是历史最悠久的进化难题之一。

科学家过去发现,猴子会发出一种“咂嘴”信号,即快速连续的张口-闭口循环动作,频率约为每秒5个周期(即5Hz),与人类所有口头语言的节奏相似。科学家在其他灵长类动物中也发现了类似的节奏,包括长臂猿的“歌唱”、红毛猩猩的辅音状和元音状呼号。然而,在与人类的亲缘关系更近的非洲猿类(例如大猩猩、倭黑猩猩和黑猩猩)身上还缺少相关证据,因此言音进化的连续性仍无定论。

为了填补这一空白,英国华威大学领导的研究小组调查了黑猩猩交流声音的节奏。研究人员获取了来自四个黑猩猩群体的数据,包括英国爱丁堡动物园和德国莱比锡动物园的两个人工圈养群体,以及在乌干达的两个野生群体。视频分析显示,黑猩猩在互相梳理毛发时发出的“咂嘴”节奏平均为4.15 Hz,近似于人类言音特征。

研究人员认为这是朝着解决言语进化难题的方向迈出的关键一步,为语音节奏在灵长类谱系中进化中具有连续性的假说提供了支持。相关结果已发表在《生物学快报》杂志。

5. 藻类暴发下的多彩南极

南极“绿雪”

人们想象中的南极应该是一片皑皑白雪覆盖下的雪原。但是,当你在温暖的月份里造访它时,你可能会被它调皮的颜色惊到。“这是一个多彩的地方,简直就是一个抹上绿色、红色、橘色的调色板,看起来很魔幻。”剑桥大学生态学家Matt Davey说。

最近,剑桥大学和英国南极科考队在《自然-通讯》发表研究表明,气候变暖导致南极“绿雪”蔓延,“绿雪”是由绿雪藻大量繁殖造成的,成为南极碳循环中最要组成部分。在过去两年,Davey带领团队利用欧洲哨兵2号卫星遥感和实地测量,研究了南极半岛(Antarctic Peninsula)的绿藻暴发,并绘制了南极藻类地图。他们发现了1679处藻类暴发点,总表面积约为1.9平方公里,相当于1300吨干生物量。

6. “乖乖听话”的人造纤毛

形状记忆高分子是一种特殊的智能材料,能够在光、热、电磁场等外界刺激下,形状变化为其“记忆”中的某个特定形状,因而在航空航天、智能装备、微纳制造等领域有着广泛的应用。

近日,北卡罗来纳州立大学和伊隆大学的研究人员开发了一种能够响应磁场和光控的人造磁纤毛,它在磁场的作用下弯曲,而在适当的光照下又会恢复到原来的形状。这种人造纤毛有望在软体机器人等领域发挥重要的作用。该成果发表于《先进材料技术》。

7. 荧光指明固液界面上的质子运动

氢是所有化学元素中质量最轻的元素。日常的水中普遍含有氢离子。这是由于小部分的水分子会自发电离,失去电荷后成为质子。研究表明,质子在水中很容易移动,可以借助不同的水分子轻易跳跃(Grotthuss机制)。但是,如果在水中存在一个固体界面,氢离子的行为会受到极大的影响,而这种界面上行为普遍存在,例如细胞信号传输、化学催化等。到目前为止,科学家几乎没有工具在室温条件下和水中测量氢离子在界面上的运动。

在最近的一项研究中,研究人员首次在单分子水平上观测到固液界面上的氢离子运动行为,结果发表于《自然纳米技术》杂志。研究人员选择六方氮化硼(hBN)晶体作为固体界面,这种非常光滑的材料表面通常含有晶体缺陷,当氢离子与缺陷结合时会发出荧光。利用超分辨率显微镜,研究人员以10纳米的高精度确定了缺陷的位置。

观察显示,界面上氢离子与晶体缺陷结合,依次发出荧光,可以让研究人员标记出氢离子实时运动的路径,水-固界面为质子传输提供了一条优先路径。

8. 用几何和动力学预测细胞发育

从单个细胞到器官形成,向来是最神秘、复杂的问题。在胚胎发育过程中,大量细胞的协调集体运动很类似海洋和大气中复杂的流体运动,但它们究竟如何发育成大脑、肠道的呢?科学家认为,如果能够对细胞的命运进行预测,或许就能在发育的最初阶段发现病变。传统方法是用显微镜观察单个细胞的轨迹来预测组织的形成,但如此就要处理大量数据,以致无法找出关键点。

近日,一个哈佛大学领衔的跨学科团队提出了新的方法,尝试将流体动力学和混沌理论应用到胚胎发育中。混沌理论不必要求了解每个细胞的轨迹,而是了解整个全局。与预测漂浮物在海面的位置类似,他们以细胞运动数据为基础进行建模,得到了胚胎中吸引或排斥细胞的区域的时空图,这些区域只会在发育过程中的特定时间、位置出现。进而,研究人员可以实时观察细胞的分化甚至分化前的前体细胞。

UUID: 76e7056b-85fe-4ae9-9a29-f280a41773f2

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/返朴公众号-pdf2txt/2020/返朴_2020-05-31_逆转生物钟的神奇分子;固液界面上质子如何运动? 用数学预测细胞发育? 一周科技速览.txt

是否为广告: 否

处理费用: 0.0106 元