数学的发展始终贯穿在对基本问题和基本对象的探索认识中。好的问题对数学的发展起了巨大的推动作用。在数学研究中,我们需要考虑好的问题,基本的问题,同时要有好的数学思想。
本文试图通过人们对一些基本的数学研究对象如素数、圆、球、方程、函数等的探索历程展示基础数学的特点、部分思想和发展及现在活跃的一些研究方向。
基础数学大致分为代数(含数论)、几何、分析(基于微积分的数学)三部分,但看一下前几届国际数学家大会的报告目录及其分组就知道现代数学的分支繁多,各个部分之间的融合与交叉也是日趋深入。有些方向是非常活跃的,如代数几何、数论、表示理论、动力系统、偏微分方程、几何分析、调和分析、微分几何、微分拓扑、复几何、拓扑、组合、数学物理等等。
数学当然是研究数与形的科学,也研究结构。逻辑支撑着数学的大厦,而逻辑本身也是数学研究的对象,与计算机科学密切相关。
数学理论的起始形是容易感知的,我们一睁开眼睛就会看到各种各样形状的物体。数却是一个抽象的概念,但其形成也有很长的历史了,据考证和研究,人类在洞穴时代就已经有数的概念了,若干动物也有数的概念。刚开始时,实际的需要产生了加法、减法、乘法、除法等运算,长度、面积等概念。
到公元前3000年,数学的应用范围就很广了,如税收、建筑、天文等。数学从理论上系统研究始于古希腊人,在公元前600年至公元前300年期间,代表人物有毕达哥拉斯、欧几里得等。欧几里得的《几何原本》采用公理化体系系统整理了古希腊人的数学成就,两千多年来一直是数学领域的教科书,其体系、数学理论的表述方式和书中体现的思维方式对数学乃至科学的发展影响深远。