纯粹数学的雪崩效应:庞加莱猜想何以造福了精准医疗?

作者: 顾险峰

来源: 赛先生

发布日期: 2016-04-12 06:49:31

庞加莱猜想的证明及其引发的离散曲率流方法在精准医疗领域有广泛应用,特别是在虚拟肠镜技术中,提高了早期直肠癌的发现几率和安全性。

最近英国上议院议员马特·瑞德利在《华尔街日报》上撰文《基础科学的迷思》。他认为“科学驱动创新,创新驱动商业”这一说法基本上是错误的,反而是商业驱动了创新,创新驱动了科学,正如科学家被实际需求所驱动,而不是科学家驱动实际需求一样。瑞德利先生的言论反映了许多人对基础科学的严重误解,会给年轻学子们带来思想混乱和价值观念上的困扰,有必要加以澄清。

计算机科学和技术发展的一个侧面就在于将人类数千年积累的知识转换成算法,使得没有经历过职业训练的人也可以直接使用最为艰深的数学理论。在拓扑和几何领域,往往很多具有数百年历史的定理仅仅在最近才被转换成算法。但是,依随计算机技术的迅猛发展,从定理到算法的过程日益加速。

庞加莱猜想的证明就是一个鲜明的实例,虽然雪崩效应还没有被大众所察觉,但是雪崩已经不可逆转地开始了!法国数学家庞加莱是现代拓扑学的奠基人。拓扑学研究几何体,例如流形,在连续形变下的不变性质。我们可以想象曲面由橡皮膜制成,我们对橡皮膜拉伸压缩,扭转蜷曲,但是不会撕破或粘联,那么这些形变都是连续形变,或被称之为拓扑形变,在这些形变下保持不变的量就是拓扑不变量。

庞加莱思考了如下深刻的问题:封闭曲面上的“洞”是曲面自身的内蕴性质,还是曲面及其嵌入的背景空间之间的相对关系?这个问题本身就是费解深奥的,我们力图给出直观浅近的解释。我们人类能够看到环柄形成的“洞”,是因为曲面是嵌入在三维欧式空间中的,因此这些“洞”反应了曲面在背景空间的嵌入方式,我们有理由猜测亏格反映了曲面和背景空间之间的关系。

庞加莱最终悟到一个简单而又深刻的方法来判断曲面是否是亏格为0的拓扑球面:如果曲面上所有的封闭曲线都能在曲面上逐渐缩成一个点,那么曲面必为拓扑球面。庞加莱将这一结果向高维推广,提出了著名的庞加莱猜想:假设M是一个封闭的单连通三维流形,则M和三维球面拓扑等价。

近百年来,庞加莱猜想一直是拓扑学最为基本的问题,无数拓扑学家和几何学家为证明庞加莱猜想而鞠躬尽瘁死而后已。作为拓扑学最为基本的问题,庞加莱猜想的本质突破却来自于几何。给定一个拓扑流形,我们可以为每条边指定一个长度,使得每个四面体都是一个欧式的四面体,这样我们就给出了一个黎曼度量。

庞加莱猜想所诱发的离散曲率流方法被广泛应用于精准医疗领域。人体的各种器官本质上都是二维曲面或三维流形,曲率流方法对于这些器官几何特征的分析和比较起到了不可替代的作用。虚拟肠镜技术在北美和日本被广泛采用,主要是因为这种方法可以提高安全性,降低漏检率,降低人力成本。虚拟肠镜技术的普及极大地提高了早期直肠癌的发现几率,降低了直肠癌的死亡率,为人类的健康事业做出了巨大贡献。

UUID: b87c87d5-71fa-40df-99c2-4c198710cd23

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/赛先生公众号-pdf2txt/2016/赛先生_2016-04-12_纯粹数学的雪崩效应:庞加莱猜想何以造福了精准医疗?.txt

是否为广告: 否

处理费用: 0.0090 元