数学,在你心中是问号还是惊叹号?
如果你见识过数学的美妙,就一定会同意,数学是个惊叹号!
我是周星驰朱茵版《大话西游》的忠实粉丝,里面的许多经典对白,都被我搬进了课堂。比如,上学期最后一堂课是高等数学课程的考前答疑,我是这样开场的:“大家学了一个学期的微积分,我很想知道,数学在你心目中,究竟是个问号还是个惊叹号?”
大部分人都回应说,是问号。然而,当我继续问“那么,你的问题在哪里呢?”台下就一片沉默了。大家不吭声,也许是因为问题太多了,简直没法提;又或者是多数人但求考试通过,对疑惑是避之唯恐不及,不愿更不敢面对自己的问题。
其实,不光我班上的学生,对大多数人来说,数学可能都是一个大大的问号。他们可能难以理解,数学在某些人的心目中竟然是个惊叹号(正如紫霞之于至尊宝)!在至尊宝心目中,紫霞是美的;在某些人的眼里,数学也是美的。紫霞的美是一望即知而雅俗共赏的,而数学的美,往往不是一眼就能看出的,需要心领神会。一旦你见识过数学的美,就必然会同意,数学是个惊叹号。
如果你要考察小朋友是否在数学方面有兴趣(也就是杨先生所谓的偏好),不妨学他们父子的办法,用“鸡兔同笼”问题试一试。(“韩信点兵”确实难了一点,据我的了解,普通的大学生可能都难以胜任;它不只是简单的数的加减乘除四则运算,而是地地道道的数论。)
杨振宁先生的文章《我的学习与研究经历》特别强调了他总结出的科学研究过程三部曲:兴趣→准备工作→突破口。照我的理解,这个三部曲可以用惊叹号和问号来改写:!→?→!
为给出这个解释,我想先借用陶渊明的《桃花源记》中的诗句。所谓兴趣(第一个“!”),就是“晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近,忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。
渔人甚异之”,其着眼点在“异”,讶异;所谓准备工作(中间的“?”),就是“复前行,欲穷其林。林尽水源,便得一山。山有小口,仿佛若有光。”“仿佛若有光”就是看到了希望。至此,突破口已经呼之欲出了:“便舍船从口入。初极狭,才通人。复行数十步,豁然开朗。”豁然开朗了,才能真正领悟其真谛(第二个“!”)。
现在你看出,第一个惊叹号与第二个惊叹号是有本质差别的:前者是莫名奇妙的讶异(惊);后者是心领神会的欢喜(叹)。连接两者的问号,代表的是最曲折艰辛的漫漫求索,在陶渊明的诗句中则以“仿佛若有光”形如其最佳状态。“仿佛若有光”就是似懂非懂而接近于懂,就是得道的前兆。
首先要指出,不必所有人都对同一个东西(比如数学)感兴趣。一个人对一样东西是否感兴趣,往往取决于天性与机遇。
天性难以改变,机遇方面似乎又可遇不可求,但总有一些经验值得我们借鉴。作为例子,请允许我讲点我个人的情况。
现在我从事数学科普的写作,有三个人对我影响最大:首先是我的姑妈,她是小学数学老师,在给我数学启蒙时注意到我有数学头脑,并一直鼓励我钻研数学;第二个是我的初二语文老师,她讲课认真,写得一手好文章,鼓励作为理科生的我多读多写;最后一个是杨振宁先生,机缘巧合之下,我有幸蒙他指点,写了一篇关于他的同事数学物理学家戴森(Dyson)的传记(详见《戴森传奇》),得到他首肯和鼓励。
遵循他的建议,在取得数学博士学位走上工作岗位之后,我坚定不移地踏上了科普写作的道路。我知道前路漫漫,但我乐此不疲。从前思考数学时,我常常犯懒;现在,我的写作一天都停不下来。
我想,科普的一个重要目标,就是要吸引更多的读者到第二个范畴(甚异之)和第三个范畴(仿佛若有光)。德国数学家察吉尔(Don Zagier)举过一个例子,可以帮你判断一个人是否有当数学家的潜质:我喜欢显式的、可动手实践的公式。
对我来说,它们本身就很优美。它们可以很深刻,也可以很简单。例如,设想你有一串数,它们满足这样的性质:其中任意一个数加上1以后得到的数,恰好是前后相邻两数的乘积。那么这一串数必在五步之内循环。比方说,如果你从3, 4开始,那么这串数是3, 4, 5/3, 2/3, 1, 3, 4, 5/3,…,在五步之内循环。
数学家与非数学家的区别,不在于能否发现像这样的东西,而在于是否关心它、并对它为什么正确、有何意义、与数学中其它东西可能存在的联系而好奇。
当然,科学家做研究,其终极目标当然是进入第四范畴:追求“豁然开朗”,乃至发现(也许,一个更有抱负的说法是“开辟”)“世外桃源”。在许多人物传记中,你可以读到他们对灵光一现的美妙瞬间的捕捉与形容,最刺激的画面莫过于阿基米德发现浮力定律时的裸奔,那已成为流传千古的大惊叹号!阿基米德当时呼喊的“Eureka”,翻译过来就是“我得道了!”
我们把少年费曼的这个疑问留给有兴趣的读者。
如果你想获得提示或核对答案,可以参见美国物理学会对他的访谈档案(https://www.aip.org/history-programs/niels-bohr-library/oral-histories/5020-1)。费曼的例子属于似懂非懂(估计他是故意这么发问,以启迪有兴趣的读者),还有待豁然开朗。我觉得下面一个例子更简单,可以让学过复数的读者豁然开朗。
欧拉(Euler)的下述公式,几乎已经被奉为数学之美的首选代言:e^iπ + 1 = 0
毫无疑问,对那些第一次见到这个公式的人,其第一反应必定是一个大大的惊叹号——你肯定会觉得奇妙,这是真的吗?如果你把它当作一个优美的事实直接接受,那就失去一个进入桃源仙境的绝佳机会了。
我发现不少通俗文章写得过于详细,以至于读者被牵着鼻子走,甚至没有思考的余地。所以我时刻提醒自己,切忌“知无不尽”。我只要播下种子就好,因为在后面的剧情中,主角换人了。
延伸阅读①戴森传奇②比尔·盖茨:此生未遇的良师——费曼 | 视频③阿蒂亚:美妙的数学之梦