计算机会有超人的智能吗?
上个月,谷歌计算机系统AlphaGo战胜欧洲围棋冠军樊麾的新闻又一次让人工智能上了头条。今天开始,AlphaGo将升级和人类的围棋对决,与更胜一筹的韩国著名棋手李世石对战5局。据报道,李世石对赢得比赛很有信心,认为AlphaGo只有三段棋手的水平,但他同时觉得,如果人工智能技术继续发展的话,再过一至两年,比赛的结果将很难预料。
很少有人料到,人工智能能和人类围棋高手一决高下的日子到得如此之早。现在的问题是:接下来会怎样?对关注科技多于关注围棋的人来说,计算机是否能在围棋上打败所有人已经不太重要,而重要的是:人工智能全面达到甚至超越人类智能的时候是否快到了?
一种常见观点认为,既然人工智能通常是指“用计算机完成那些需要人类智能的任务”,那么随着计算机科技的进展,自然不断有任务会从“只有人能完成”的单子中被移到“计算机也能完成”的单子中。这种情况在历史上已经发生多次了,而“在围棋上达到职业棋手水平”只不过是最新的一次而已。这当然不会是最后一次,计算机也一定会越来越多地接管人类的脑力劳动,就像其它技术接管人类的体力劳动一样。
但每个任务都有自己的特点,计算机在围棋上的进展不会直接对应于在其它领域中的进展。由于人能干但计算机不能干的事还数不胜数,人工智能全面达到甚至超越人类智能仍只是一种遥远的可能性,甚至可能根本就是天方夜谭。
与此相反的观点认为这次的情况和以往不同。
上面的分析的确适用于“深蓝”战胜国际象棋世界冠军的例子,但AlphaGo是基于“深度学习”技术的,其围棋知识不是设计者编进程序里的,而是系统自己从大量的棋谱和对局学到的。这就是说系统的围棋水平会在没有人类介入的条件下不断提高。由于计算机的学习速度远高于人类,其水平超过所有人似乎只是个早晚的事。如果计算机能学围棋,它为什么不能通过学习在任何任务上赶上以至超过人类呢?
在计算机科学中,“计算”这个词是有明确定义的。如果一个问题的解决过程在一个系统中表现为“计算”,那就是说对这个问题的每个实例(输入),系统的解答过程必须遵循某个预定的方法(算法),而且答案(输出)一定符合某个确定的标准。而与此相反,“学习”恰恰意味着对同一个输入,输出的质量随着经验的积累而逐渐提高,因而不是确定的。对同一个过程而言,这两个标签是不能同时适用的。
为了描述的直观性,让我们假定一个系统的总技能水平可以度量,比如说是它能解决的问题的数量。这样一来,系统的学习能力就体现为这个量和时间的关系,而根据前面的讨论,我们可以区分四类不同的系统。
按上述分类标准,人类大致属于“绿线族”。这是因为一个人在正常情况下总是可以学习新技能或修改已有技能的,但不能对自己的思维规律做根本性修改。不同的人的智力有高低及特征上的不同,但在这一点上和其它三类系统的差别还是明显的。
人类智能当然未必是智能的最高形式,所以“超人智能”是个有意义的概念,尽管我们至今尚未得到任何关于其确实存在的证据。
但即使是作为一个纯粹理论上的可能性来说,目前相关的议论仍充斥着大量的概念错误,如“智能”与“技能”的混淆以及不同类的“学习系统”之间的混淆。在“奇点”这个提法背后的基本假设就是智能系统的智力会加速增长,以至于会造成质的差别。这个假设至少在人类历史的尺度上是没有证据的。和先秦诸子或古希腊先贤相比,今天的我们可以说知识和技能水平要高很多,但未必智力水平更高吧?
就凭你会编程序或知道量子力学,就敢说自己比诸葛亮聪明?
随着计算机的发展,人工智能系统的运行速度、存储容量、数据拥有量都会继续大幅提升,这会使得计算机在越来越多的技能上赶上以至超过人类,但这都不意味着计算机因此拥有了超人的智能。这就好比把同一个程序系统从一个普通计算机上移植到一台超级计算机上:这以后它自然在解决问题的能力上有极大提高,但这个系统并没有因此而变得“更聪明”。
真能达到“红线族”的计算机系统在我看已经不是“人工智能”,而应该被称为“人工神灵”了,因为它们的工作原理不再是我们所谓的“智能”,而是像“如来掐指一算”那样完全超出我们的理解能力。和其它根据定义就超出我们理解力的对象一样,我们当然没办法证明这种计算机系统不可能存在,但忧心于如何防范它们也同样毫无意义。