由中国科学院物理研究所/北京凝聚态国家实验室(筹)、普林斯顿大学和瑞士苏黎世联邦工学院的研究者们组成的国际团队,最近在一类特殊的金属性材料中预言了一种新型“粒子”的存在。这种独特的物理特性具有潜在的应用价值,即有助于研发具有高效率低能耗特点的新型芯片。研究人员预言在钨二碲化物(WTe2)中存在着这种“粒子”。形形色色的固态材料像一个个“材料宇宙”,包含着多种不同特性的“粒子”。
本研究相关工作发表在最新一期的《自然》杂志上。
研究者们把这种新型“粒子”称为二类外尔费米子,是标准量子场论中的外尔费米子的“表亲”。然而,新的“粒子”在电磁场中表现出非常不同的特性。引领这项研究的主要有中国科学院物理研究所的戴希研究员、普林斯顿大学物理系的安德烈.博纳维克副教授、苏黎世联邦理工学院的阿列克赛.索鲁雅诺夫博士以及马蒂斯.特罗埃尔教授完成。
同时该研究团队还包括包括普林斯顿大学的王志俊博士、苏黎世联邦理工学院的吴泉生和多米尼克.格莱斯博士。
研究人员们表示,85年前,在量子理论的发展初期,这种粒子的存在可能性被物理学家Hermann Weyl摒弃了。因为它存在于宇宙中的粒子是由相对论量子场论来描述的,它结合了量子力学与爱因斯坦的相对论。根据这一理论,固体由原子组成,原子包含质子和包围它运动的电子。
因为固体中电子的数目极其庞大且互相之间存在着相互作用,因而不可能用量子力学理论来精确地描述固体中的每个电子的运动。取而代之的,科学家们用一种称为“准粒子”的简化观点来更有效地描述固态材料中的电子运动,即把无数相互耦合在一起的真实电子的运动,简化为无相互作用的“准粒子”,在离子和其他电子一起形成的等效场中运动。这些准粒子,也叫布洛赫电子,都是费米子。
正如电子是真空宇宙中的基本粒子,布洛赫电子也被认为是固体材料中的“基本粒子”。换句话说,在固体物理学家们看来,晶体材料本身就是一个“宇宙”,拥有自己的“基本粒子”。近年来,研究人员已经发现这样的“材料宇宙”可以产生出相对论量子场论预言的大多数粒子。这些准粒子中的三个,狄拉克,马约拉纳和外尔费米子,已经在一些材料中发现。
尽管后两种粒子在实验中难以捕捉,却开启了在低廉和小尺度凝聚态体系中验证量子场理论的新途径。由于这些晶体可以在实验室中生长,因此可以通过实验在WTe2或其他候选材料(如钼碲化物MoTe2)中寻找。
“也许人的想象力可以走得更远,从而在凝聚态物质中找到相对论量子场论所不知道的粒子”,博纳维克如是说。我们有理由相信这些研究者们能够做到。宇宙是由量子场论描述的,在这种描述体系的建立过程中用到了一定的规范或对称性,像熟知的洛伦兹对称,这些都是高能粒子所必须遵从的。但是,洛伦兹对称性对凝聚态物质并不适用,因为相比于光速,在固体中准粒子运动的速度非常小,使得凝聚态理论从本质上讲是一个低能有效理论。
“大家想知道,在‘材料宇宙’中产生非相对论的不符合洛伦兹对称性的‘基本粒子’是否是可能的?”索鲁雅诺夫说。关于这个问题,该国际合作团队给出了积极的回答。这项工作开始于索鲁雅诺夫和戴希在2014年11月到普林斯顿大学拜访博纳维克,在一次讨论中大家注意到了WTe2在磁场中的反常行为。
这些行为是由普林斯顿大学的实验小组在一些材料实验中(《自然》2014)观察到的,但要确认它是由新型“粒子”导致的则需要更多的努力。在后续研究中,他们很快发现,尽管相对论理论只允许一种外尔费米子,但在凝聚态物质中出现物理上不同的另一种外尔费米子是有可能的。
这一发现开辟了许多新的研究方向。大多数正常金属在磁场中表现出电阻率的增加,这是非常普遍的现象。
最近普林斯顿和中科院物理所的理论和实验研究证实,对标准的第一类外尔半金属而言,当电场和磁场施加在同一方向时,表现出电阻率的降低,即纵向负磁阻。而这项新工作表明,对于第二类外尔费米子材料而言,磁阻行为与晶体方向有关,当磁场和电流沿着一些特定的晶体方向时,电阻率会和正常金属一样增加,而在另一些方向上电阻率则会和外尔半金属一样减少。这些复杂的输运特性具有潜在的应用前景。
“更有趣的问题是,在其他凝聚态系统中是不是可以找到更多的‘基本粒子?”博纳维克说。“还有什么样的其他‘粒子’被隐藏在无限的‘材料宇宙’中?关于这方面的研究也许只是刚刚开始。”