探索物质结构之透射电子显微镜

作者: 谷林

来源: 科技导报

发布日期: 2017-07-24 10:04:08

本文介绍了透射电子显微镜的发展历程、应用领域及其未来的发展方向,强调了其在材料学、物理、化学和生物学等领域的重要作用和影响。

眼睛是人类认识客观世界的第一架“光学仪器”,但它的能力却是有限的,通常认为人眼睛的分辨率为0.1 mm。17世纪初,光学显微镜(图1)出现,可以把细小的物体放大到千倍以上,分辨率比人眼睛提高了500倍以上,这也是人类认识物质世界的一次巨大突破。随着科学技术的不断发展,直接观察到原子是人们一直以来的愿望,电子显微学的出现为人们实现这一夙愿提供了可能。

随着电子显微学的不断发展和进步,透射电子显微镜(图2)的分辨率已经达到了亚埃量级,电子显微镜已经成为材料学领域不可或缺的表征手段。另外,电子显微学与纳米科学、生物学等的结合,使得电子显微镜的功能日渐扩大,同时它也促进了这些领域的飞速发展。

透射电子显微镜的起源与发展。透射电子显微镜起源于20世纪20~30年代。1924年,德布罗意提出了粒子具有波动性。

1926—1927年,Davisson、Germer以及Thompson Reid实验发现了电子衍射,从而证明了电子的波动性,因此想到可以用电子代替可见光来制作电子显微镜,以克服光波长对分辨率的限制。1926年,德国学者Busch提出采用轴对称的磁场有可能使电子聚焦,为电子显微镜的制作提供了理论依据。1933年,Ruska等人做出了世界上第一台透射电子显微镜。

1934年,电子显微镜的分辨率已经达到了500Å,Ruska也因此获得了1986年的诺贝尔物理学奖。1939年,德国西门子公司造出了世界上第一台商品透射电子显微镜(TEM),分辨率优于100 Å。之后,美国Arizona洲立大学物理系的Cowley教授等定量地解释了相位衬度像,即所谓高分辨像(高分辨TEM图像见图3),从而建立和完善了高分辨电子显微学的理论和技术。

高分辨电子显微术能够使大多数晶体中的原子列成像,目前高分辨电子显微术已经是电镜中普遍使用的方法,其分辨率已经达到了1~2 Å。

透射电子显微镜的应用。透射电镜具有分辨率高、可与其他技术联用的优点,在材料学、物理、化学和生物学等领域有着广泛地应用。材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。

透射电镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。电子显微技术对于新材料的发现也起到了巨大的推动作用,D.Shechtman借助透射电镜发现了准晶,重新定义了晶体,丰富了材料学、晶体学、凝聚态物理学的内涵,D.Shechtman也因此获得了2011年诺贝尔化学奖。

透射电子显微镜的发展方向。目前,透射电子显微术有几个重要的发展方向。第一,分辨率的提升。分辨率一直是透射电镜发展的目标和方向,发展新一代单色器和球差校正器,进一步提高透射电镜的能量分辨率和空间分辨率,尤其是对低压电镜。第二,发展原位透射电镜技术。

原位透射电镜在材料合成、化学催化、生命科学和能源材料领域有着重要应用,可以通过在原子尺度下实时观察和控制气相反应和液相反应的进行,从而研究反应的本质机理等科学问题。第三,更加广泛的应用在生物大分子结构研究中。冷冻电镜在生物大分子结构研究中的广泛应用,将推动冷冻电镜技术的不断发展。冷冻电镜在生物学领域的应用越来越受到重视,成为连接生物大分子和细胞的纽带和桥梁。

UUID: dfc07430-aa21-4792-b76a-c3a42970b550

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2017/中科院物理所_2017-07-24_「转」探索物质结构之透射电子显微镜.txt

是否为广告: 否

处理费用: 0.0052 元