科学理论需要不断的用实验证明,艺术则不断寻找新的表达媒介。提到实验室,大家一定都不陌生,不论文科理科生,在学校的时候多多少少去过一两次。实验室里的器材设备琳琅满目,操作方式繁复而严谨,在这个讲究极简美学、流行量子力学的时代,我们似乎可以更大胆的去跳脱传统概念,那么一个实验室可以简单到什么程度呢?
如上图所示,宛如蒙德里安的当代艺术一般,几何线条延展在晶莹剔透的玻璃樽中,这就是由微流控技术实现的“芯片上的实验室”。麻雀虽小,五脏俱全。
在几平方厘米的芯片中包含不同功能的通道、泵、阀、混合室、化验区等,通过集成电子微控制器的操控,实验液体在这些区域中穿梭,在微观尺度上精确的混合、反应和分离,过去需要大型设备、特定环境、复杂操作的实验和观察,现在使用微流控芯片就可以极精确、高效率、低污染的完成,广泛应用于临床检验医学、生物化学和分子生物等领域。按照控制方式来说,微流控芯片可分为被动式和主动式两种。
被动式微流控更多由自然力控制,或者可以说是只有微流没有控,利用液体本身在微管道中发生的毛细现象,在液、固、气三相界面上液面弯曲产生的作用力,使液体产生定向的流动,主要应用于简单的检测项目。主动式微流控是更被业内认可的“真正的”微流控,既有微流又有控,即前文提到的,通过芯片内部精密的反应腔与阀门装置,精准控制液体反应。主动式微流控往往是为了满足更加复杂的实验过程要求的,比如分子检测。
阿尔伯特·福尔奇是华盛顿大学的生物工程系教授,从事微流控研究工作。他的团队致力于利用数字制造技术(3D打印、激光切割)设计、制作微流控设备。该团队开发了一款微流控设备,通过少量肿瘤活检样本,即可帮助医生筛选最适合患者情况的药物混合体,大大降低了药物测试的成本。福尔奇教授在经营实验室的同时,也担任期刊《芯片实验室》的顾问与艺术编辑。
Lab on a Chip由英国皇家化学学会出版,发表多学科领域的微米级、纳米级研究成果。期刊每年都会与美国国家标准与技术研究所共同赞助Art in Science Award科学艺术摄影竞赛,并在化学与生命科学微型化系统国际会议上颁奖。