如果你不知道折纸界也有“奥运会”——国际折纸奥林匹克竞赛(International Origami Internet Olympiad),那你多半也不知晓作为其必考赛题的“镶嵌折纸”(Origami Tessellations)。它在折纸艺术的家庭中确乎年轻;1970年代,首个镶嵌折纸作品才借日本数学家藤本修三(Shuzo Fujimoto)之手问世。
要弄清楚什么是镶嵌折纸,首先要了解“镶嵌”(Tessellation)。镶嵌,又常译为“密铺”(故也有少数爱好者使用“密铺折纸”一词),指全等形能不重叠、无间隙地铺满平面。上至埃舍尔赫赫有名的视错觉画作,下至街头巷尾最寻常的砖铺路面,你都能找到镶嵌的存在。
镶嵌折纸则凭借纸张折叠形成的立体结构来实现这一点,且仅使用一张纸,不经剪裁或胶粘;部分镶嵌折纸不仅正反两面均为极富观赏性的镶嵌图形,还能任意且顺畅地展开复原,俄罗斯数学家叶卡捷琳娜·卢卡舍娃(Ekaterina Lukasheva)的折纸作品便是绝佳的例子。
你也许会好奇:这一以数学概念冠名的折纸,究竟是如何与数学相联系的?让我们从镶嵌折纸的基础开始——扭转(twist)。如同动图所展示的那样,白纸中心的正方形随着折叠转过了90°。扭转的关键,从图1的折痕中很容易发现——以一个凸多边形为中心,自其每一边“发出”两条折叠方向相异的平行线。
单单是作为基础的扭转似乎已经花样不少;而当扭转被镶嵌理论组合起来,通向无穷可能性的大门豁然洞开。将扭转用其中心多边形的相似形框起来,它便成为了一只“晶胞”,可以在平面上无限地拼接。虽说是“晶胞”,但其实这些小单元并不完全相同,其内部亦存在着周期性的“手性”变化——以保证折痕的连续。镶嵌折纸不仅是艺术,也不仅是几何学的具象;它在工程领域的应用可能仍在挑战人们的想象。
美国物理学家、折纸艺术家罗伯特·朗(Robert Lang)曾说:“折纸最重要的一大属性是:一旦我们研究并理解了纸张折叠和展开的方式,便可以将这些方式应用于与纸张截然不同的事物上。”罗伯特于1988年加入美国航空航天局,在2001年辞职,决定将所有的时间奉献给折纸——但这并未使他与工程隔绝。2015年,加州劳伦斯利弗莫尔国家实验室的长投射式望远镜进入了测试阶段;其设计顾问便是罗伯特。
折纸仍然在蓬勃地发展着,镶嵌折纸亦方兴未艾;科学与艺术必仍在这一方纸上交辉。