全息是一个合成词,源自希腊语:holos(全部)+gramma(信息),顾名思义,它是记录并重现物体全部光学信息的一种技术。那么,光学信息包括什么呢?我们都知道,光可以被看做是一种波,那么波的振幅、波长、相位等信息都是“全息”的收集对象。
全息影像与普通影像在视觉观感上最大的区别就是所谓的“立体感”,而营造“立体感”的关键因素则是光所携带的相位信息。我们人眼能看到物体是由于其本身发光或反光,这些光线就像是连入眼睛的数据线,将物体的各种光学信息传送到我们眼中,从而认知物体。
与人眼工作方式类似,普通影像记录方式接收物体反光的振幅(影响明暗、轮廓)和波长(决定色彩)信息,并用一定的手段进行还原,无法包含相位(反映深度)信息,而全息的记录方式则以两束激光照射物体产生的干涉条纹将相位信息录入胶片,再次向胶片照射激光,则可“重放”所有光学信息,形成具有立体观感的图像。
最基本的全息摄影工作流程:一道激光由分光器分成两束,一束照射在被拍摄物体上,进而反射在胶片上,这时,它已经不只是束光,而是物体上千千万万的点的漫反射光,我们称之为“物光”;另一束则直接照射胶片,我们称之为“参考光”,“物光”与“参考光”相互叠加、削减,即发生干涉现象,在胶片上进行一定时长的曝光,形成干涉条纹并记录在胶片上。
干涉条纹之间的间隔和反差其实就是物体每一点的光学信息的“编码”,这些条纹很小,只有用显微镜才能观察到,而胶片看起来就是透明的;用相同的“参考光”照射胶片,“参考光”与胶片上的干涉条纹发生衍射,相当于“物光”的所有点与“参考光”在胶片中再次相遇,还原了当时拍照的状态,物体上所有点的“物光”再次被“召唤”出来,“重组”物体,从而“解码”了立体图像。
全息影像还有一点神奇之处,即使将全息照片剪碎,每张碎片也包含了物体全部光学信息,透过这些碎片,就像透过望远镜看世界,随着观察角度的改变,可以看到不同的部位。普通照片则无法做到这一点,这是由于全息的特殊记录方式,使其每一处都包含了被记录物体所有的光学信息。
那么,我们生活中铺天盖地的“全息裸眼3d体验”是真正意义上的全息吗?
《星球大战》中机器人投射出的三维影像、《钢铁侠》炫酷的悬空操作界面是未来全息的样子吗?作者以为:实际上,静态全息影像的记录和还原技术已经相对成熟,而严格意义上的动态全息影像,需要脱离显示介质,直接在空气中形成360度无死角观看的像,还并未问世。
全息概念和理论最初由英国匈牙利裔科学家丹尼斯·盖伯(Gábor Dénes)在20世纪40年代提出,在60年代被实现,应该特指利用激光,以干涉条纹的方式记录并还原立体影像的技术方法。
如今市场上将全息技术与三维影像技术划等号,实则不严谨,全息实际上也可以看做是实现三维影像、立体观感的一种方式,与其他技术相对平行。目前,只有全息技术可以记录还原相位信息,“物理”属性很突出,而要区分市面常见的真伪全息,最简单粗暴的判定方式是:立体观感是否受到观察角度与距离的影响,若有影响,则非真全息。