五月的北京很热,但光学超分辨显微更热。这个月,Springer这一赫赫有名的科学期刊与图书出版社,隆重推出了新的开放式期刊Optical Nanoscopy,总编正是Stefan W Hell教授,一位成功发明了多种光学超分辨方法的该领域奠基人。
时间倒推回2009年一月,Nature Methods评选“年度方法”(Method of the Year 2008),将这一殊荣赐给了荧光超分辨显微技术。半年之后,Nature Photonics已经又按捺不住,为超分辨显微再次出了新的专辑。Nature Publishing Group如此频繁地出新专辑,不敢说是绝后,但肯定是空前。
生物学家喜欢光学显微,几乎是一见钟情的事情。
除了光学显微,还有哪种方法能够让人一眼就看清楚活细胞、活组织的内部结构呢?所以无怪乎光学显微的两个发明人胡克(列文-虎克和罗伯特-胡克),都是首当其冲地展示了光学显微在生物学上的应用。显微的发展离不开光学,光学的发展需要三大件:理论、材料、工程。这三大件,居然在20世纪初的德国小镇耶拿(Jena)相聚了。
那里有光学泰斗阿贝(Ernst Karl Abbe)、光学玻璃大家Otto Schott,和光学工程大师Carl Zeiss。后两人都同时进入商界,并以他们的家族名称作为公司的名称,至今仍是世界上数一数二的巨头。
阿贝则深入研究了在传统光学中,如何能够提高分辨率,以及是否能够无限提高分辨率的问题。答案多少有点令人沮丧:光学显微由于光束直径有限,透镜大小有限,会产生衍射,从而具有一个所谓的衍射极限:这个式子也是一个点扩展函数(PSF)的半高全宽的描述。它说明:如果一次把处于这个半径里面的粒子亮起来,那用光学显微是无法分辨它们的。所以,这个公式也就是光学显微分辨率的描述。
STED,全名是Stimulated Emission Depletion,受激辐射光淬灭。请看下图:这幅图是一幅典型的STED系统结构示意图。在右上角,有一副能级图。其中,你看到红色的箭头和黄色的箭头了吗?如果看到了,说明这两个箭头是很好“分辨”的,对不对?好,接下来稍加科普一下这个图的意义:绿箭头代表粒子被激发从低能级S0到高能级S1,然后粒子会弛豫到亚稳态---高能级的最低点。
接下来粒子会在这抽根烟,休息一下。好吧,现在已经禁烟了,所以他没抽烟,只是喝了个下午茶。这个时间短到几个纳秒。这个短暂的快乐时光被叫做粒子的寿命(lifetime)。然后粒子选择不再高帅富S1,回到屌丝阶层S0。(苏轼曰:吾欲乘风归去,又恐琼楼玉宇,高处不胜寒。。。)这大概是绝大多数电子的选择。跳下来的时候它们会降落在S0能级的不同高处,并形成一定的分布。
这个分布我们可以用发射光谱来描述其统计特性。
接下来的实验就非常简单了:选一种合适的荧光物质,按顺序先给激发脉冲(2ps左右),等它跃迁上去了马上给一个受激辐射波长的脉冲(250ps左右),然后用二向色镜区分受激辐射跟自发辐射,探测过来的自发辐射信号。受激辐射越大(橡皮擦得干净),剩下的PSF越小,也就是分辨率越高。
这个就是Pulsed STED.当然,如果你觉得时间控制太麻烦,其实可以都给连续信号,因为反正二向色镜能区分,只不过擦得没那么干净罢了。这个就是CW STED。对仪器方面的补充说明:要想STED,先做Confocal。顺着635nm,DC1将激发光通过物镜照到样品上;从样品回来的荧光信号透过DC1,到达APD被探测。移动物体,实现三维共聚焦成像。接下来STED。
利用一个位相片实现光位相调制,最终在焦点处形成环形光分布。放上样品,成像,STED实现。