2022年7月12日,韦布空间望远镜(James Webb Space Telescope,以下简称“韦布”)发布了第一批全彩色的照片。其中,一些图像上出现了八个角的“星星”。韦布的第一张全彩色图,由近红外相机拍摄。图中出现了一些显示八角芒的天体。这些八角星的八个芒角由光的衍射导致。光的衍射指的是光绕过障碍物传播的现象。
对于反射望远镜,主镜面负责将星光反射到副镜面,后者进一步将光反射后传递给探测器/相机或第三个镜面。在望远镜的实际观测中,主镜面自身与副镜的支架都会引起衍射现象。主镜面的衍射由其边缘引起,产生的衍射图案由其边缘的形状决定,衍射光的方向垂直于边缘。如果主镜面是N边形的,产生的衍射光分别垂直于N条边,经过主焦面时,中心重合,形成N对(2N个)芒角。
对于正N边形,如果N为偶数,N对芒角会重叠为N/2对(N个);如果N为奇数,N对芒角彼此不重叠,依然显示为N对(2N个)。如果主镜面是圆形的,就相当于无穷多条边,产生的衍射芒角就沿着半径朝外,各方向都有,从而形成同心衍射圆环,不显示芒角。不同形状的主镜面产生不同形状、不同数目的芒角。光照射副镜支架,也会产生衍射现象。
如果副镜面的支架有N条边,也会产生垂直于边的衍射光,经过主焦面后也形成N对(2N个)芒角。只要支架的某两条边在主镜的投影位于同一直线或平行,对应的芒角也会重叠,导致芒角数目减少。不同形状的主镜与不同的副镜支架的组合,产生了不同形态的衍射芒角。
先以著名的哈勃空间望远镜(Hubble Space Telescope,以下简称“哈勃”)为例,它的主镜面是圆形的,支架是十字型的4条边,因此形成的衍射图案是同心圆环叠加4个芒角。韦布的主镜面由多块六边形镜面拼接而成,副镜面的支架有3条边,因此,韦布主镜面产生6个长的芒角,支架产生6个短的芒角,共12个芒角。
但专家们设计了角度,使副镜面支架产生的4个短芒角与主镜面产生的4个长芒角重叠在一起,只显现出6长2短共8个芒角。只有那些看起来特别亮的点状天体才会产生芒角。而能够在望远镜里显得特别亮的天体当然首推银河系内的恒星。事实上,韦布拍摄到的深场图、南环状星云、“斯蒂芬五重奏”与船底座星云里的绝大多数八角星都是银河系内的天体。答案是否定的。上面我们说过,绝大多数带有芒角的点状源是银河系内的恒星。
我们强调“绝大部分”,是因为还有例外——有些八角星是其他天体。韦布拍摄的NGC 7319(位于“斯蒂芬五重奏”图像顶端)的核心就是一个反例:它的中红外图像显示出明显的八角芒,但它不是恒星,而是一个明亮的活动星系核。必须指出的是,在韦布之前,其他望远镜也早已拍摄到一些明亮的活动星系核,它们也显示出明显的衍射芒角。
下图中由哈勃拍摄的类星体(活动星系核中最亮的一类)3C273就是一个例子,它显示出了明显的四角芒。活动星系核的巨大亮度一度是一个谜。不过,过去几十年的研究已经在理论上基本达成一个共识:活动星系核核心的中心有巨大的黑洞,黑洞周围的气体与尘埃围绕着黑洞下落,形成“吸积盘”;吸积盘中的物质落向黑洞的过程中,会将自身的引力势能的一部分转化为内能,使自身的温度升高,发出非常明亮的紫外、可见光、红外辐射。
紫外线与可见光加热了周围的尘埃,使其发出红外线为主的辐射。活动星系核中的黑洞与吸积盘构成的系统会还会发射出喷流(jet)。这些喷流垂直于吸积盘的方向,速度接近真空中的光速,喷流内部会产生大量射电辐射。不过,仅有一部分活动星系核会产生喷流。为什么不同波长的图像中的芒角的明显程度不同?韦布发布的图还有一个特征:对同一对象拍摄的图,近红外与中红外的芒角的明显程度不一样。
以韦布拍摄的NGC 7319的两张图像为例。这个星系的核心的近红外图像只隐约显示出芒角,而它的中红外图像却显示出非常明显的八角芒。这是因为NGC 7319的核心的尘埃发出的中红外辐射比近红外辐射亮得多。当然,芒角的明显程度还与波长自身(长波的衍射现象比短波更明显)、曝光时间等因素有关。探索无止境。
其实,除了八个角的“星星”,韦布得到的这些细节满满的照片里值得分析的地方还有很多,它们隐藏着宇宙万物乃至于宇宙自身的众多秘密,等待人类去破解。在广袤的宇宙中,人类是渺小的;但在对未知的探索中,人类又是伟大的。探索无止境,愿我们同行。