巴黎奥运会田径男子撑竿跳高决赛,瑞典选手杜普兰蒂斯以6米25的成绩夺得冠军,打破了世界纪录和奥运会纪录,这是他职业生涯中第九次刷新世界纪录。这一成绩是尘封了近30年的男子跳高世界纪录2.45米的2.5倍!仅仅借助于一根撑杆,为什么就可以跳得那么高?
远古时代,人们利用一根木杆,跨过溪流、越过高墙、腾上马背,并逐渐把撑杆跳演化成一种体育运动。撑杆跳高早在1896年第一届奥运会就被列入正式比赛项目。纵观百年奥运历史,没有哪个田径项目能像撑杆跳高那样,世界纪录提升的幅度如此巨大:从最初的3.3米到今年的6.25米,提高了将近一倍!
撑杆跳高的纪录是随着撑杆材料的演变而不断提升的。撑杆材料发展大致经历了木质杆、竹质杆、金属杆和复合材料杆(包括玻璃纤维GFRP,碳纤维CFRP,Kevlar纤维KFRP等)4个阶段。世界纪录也从实心木杆的3.3米,提升到空心竹竿的4.77米,空心金属撑杆的4.8米,玻璃纤维及碳纤维撑杆的6.18米。
借助于撑杆的“倍增器”效应,撑杆跳高成为破纪录最频繁的运动之一。有着撑杆跳高“沙皇”之称的布勃卡,从1983年到1997年连续6次夺得世锦赛冠军,35次创造世界纪录,在世界撑杆跳高领域称霸15年。无独有偶,从1998到2013年长达15年时间里,伊辛巴耶娃几乎统治了整个女子撑杆跳高比赛,28次破世界记录。
撑杆跳高也是出现事故最多的运动之一。据不完全统计,进入21世纪以来,撑杆跳高运动发生了30多起灾难性的伤害。除了落地意外受伤外,撑杆折断对运动员而言也是噩梦般的危害。如何“弯而不折”,是设计者在提升撑杆性能极限与确保运动员安全之间所必须面对的矛盾。
从撑杆跳高的过程中,我们很容易就会发现其中的能量转化问题:撑杆作为整个过程的“能量转换器”,会将运动员的动能转化成撑杆的弹性变形能,随后撑杆变直并将存储的弹性变形能转化成运动员的势能,使其达到高点;再借助肌肉收缩做功完成最后的拉升,从而越过最高点。
在运动员插杆起跳过程中,撑杆首先插在穴斗中,运动员随后会弯曲撑杆并起跳。“刚性”实心木杆由于抗弯刚度大,会像“跷跷板”一样“直挺挺”地将运动员送往高点,存储的弹性应变能低,并且对身体施加的力还很大。而设计成空心薄壁结构的“柔性”玻璃纤维撑杆由于抗弯刚度小,挠度大,转换成的弹性应变能高;并且弯曲后的撑杆可以减小力矩,这意味着运动员能够提高握杆点从而进一步增加最大高度。
好的撑杆应尽可能多地将运动员冲刺跑的动能转变为能够存储的弹性势能。简单来说,弹性势能大小近似等于载荷-变形图中曲线围成的面积。在相同载荷下,越“软”(弹性模量或变形刚度越小)的材料围成的面积越大,所存储的势能也越大,也就是说,弹性模量越小,给运动员提供的“支撑”就越大。
对于撑杆而言,其弹性势能主要由弯曲变形引起,主要影响的力学参量为弯曲刚度EI和最大弯矩M。若限定不同材料撑杆间几何尺寸相同,则对应材料的关键力学参数变为弹性模量E和弹性强度σ。弹性强度是指弹性材料抵抗外力破坏作用的能力,也就是说,弹性强度越大,撑杆就越“结实”。
在要求密度尽量低以保证轻量化设计的条件下,人们希望撑杆材料能够平衡弹性模量E与弹性强度σ的相对关系,使得弹性势能图中围成的面积尽可能的增大,做到“弯而不折”!
现代的复合材料撑杆通常分为三层:外层是高强度的碳纤维增强环氧,中间层是玻璃纤维的带状织物,内层是环带状的玻璃纤维。这样的复合材料与结构,充分利用了碳纤维的轻质高强、玻璃纤维的相对低模高强的综合优势。
一根撑杆蕴含着 “更高、更快、更强”的奥运精神,是速度、力量、技巧三者在运动员与撑杆间的完美结合。撑杆跳高运动既是对人类身体极限的挑战,也是对材料性能极限的挑战。