三体中的小不点有一颗宝贵行星,但Ta宜居吗?
在科幻小说《三体》中,三体人生活的环境变化多端,可谓冰火两重天,有时天上出现的两颗太阳将大地深深炙烤,有时则长时间处于黑暗冰冷状态。而在茫茫宇宙中,三体系统的存在是已经确认的。目前天文学家已经发现的系外行星已超过2300颗,而处于三合星系统中的系外行星个数近60颗。
在这近60颗行星中,8月25日凌晨之前,天文学家所知道的、同时满足处于宜居带且质量与地球相当的行星不到5个。如今,数目再加1,增加的这颗行星竟然还是离我们最近的一颗系外行星,绕转在三合星中最不起眼的小不点恒星周围。
北京时间8月25日凌晨1点,欧洲南方天文台召开发布会,宣布了他们最新的一项发现:在除太阳之外距离我们最近的恒星比邻星周围,发现了一颗位于宜居带的类地行星候选体。该行星候选体质量约1.3倍地球质量,每11.2天绕转比邻星一圈。它距离主星700万千米,相当于0.05倍日地距离。该工作已发表在25日的《自然》杂志。
比邻星是除太阳之外距离我们最近的一颗恒星,就在4.22光年之外。半人马座alpha位于半人马座内,是一个三合星系统,中文名是“南门二”。根据亮度,将其三颗星命名成半人马座alpha星A、B和C,其中A星和B星是和太阳非常相似的恒星,并且是双星系统,可惜,肉眼无法分辨出来。而比邻星是该系统中的小不点C星,它是一颗红矮星。
此次系外行星的发现,也是基于视向速度法。基于视向速度法,而被发现的存在行星的三体系统还包括Gliese 667C等。为此次比邻星行星的发现立下汗马功劳的,是一个被称作“暗淡红点”的计划。遥想1990年,旅行者1号在64亿千米之外,回眸一瞥,拍摄下地球的照片。在照片中,地球如此渺小,就像一颗暗淡蓝点。而比邻星是一颗红矮星,想象一下,它的行星沐浴在暗淡红光中,将搜索计划称作“暗淡红点”再合适不过。
判断一颗行星是否宜居的重要依据,是液态水的存在与否。到主星的距离太近,即使有水,也会被蒸发殆尽;距主星太远,水会以冰的形式存在;惟有在距离适当的范围内,液态水才会安然待住。这适当距离范围就称为宜居带。宜居带的内侧和外侧到主星的距离,近似地与主星的发光本领(单位时间内发出的辐射能量)有关,主星发光本领强N倍,宜居带到主星的距离就远了根号N倍。
由于本次发现类地行星的主星比邻星是一颗红矮星,质量约是太阳的1/8,发光本领是太阳的0.17%,而根据估算,太阳系中宜居带的范围约是0.99倍日地距离到1.688倍日地距离,所以如果仅考虑发光本领的话,可以推测比邻星的宜居带范围是太阳宜居带范围的4%,即从0.040日地距离到0.068日地距离。
而本次发现的行星候选体到比邻星的距离约0.05倍日地距离,尽管比水星到太阳的距离还要小很多,但就它自己所在的系统而言,它就落在宜居带内。这表明,它有可能表面温度适宜,允许液态水的存在。
但情况并没有那么简单。距离主星如此近,高能辐射粒子对于大气和液态水存在的威胁不容小觑。
据研究团组投至《天文学和天体物理》杂志的文章介绍,根据比邻星的辐射情况推测,比邻星的行星所接收的极紫外辐射是地球当前承受量的60多倍,X射线辐射则高达250多倍。考虑到地球在早期也接收到更多的高能辐射,自比邻星行星诞生以来的约50亿年间,行星承受的高能总辐射量约是地球的7到16倍。比邻星的这颗行星还是否宜居,答案尚不得而知。
为了理论上探索该行星在何种情况下仍存有液态水和大气层,研究者们进一步构建复杂的3D模型。在假设该行星具有与地球相似的大气层,假设行星表面的水含量也与地球的表面含水量相当的情况下,他们发现,该行星的轨道性质会决定主星对其造成的潮汐作用以及该行星的自转模式的不同。
假如轨道更接近圆形,行星就会被主星锁定,就像地球将月球锁定一样,公转1周的过程中自转1周,结果总是行星的同一面朝向主星,从而造成朝向主星的温度高达30多度,而背面温度则低至零下30多度,正面允许液态水的存在。如果轨道偏离圆形的程度高,行星的自转模式则更像水星,以3:2共振自转,即绕主星绕转3周的过程中,自转了2周。在后者情况下,在某些区域的温度能达到30度,也能维持液态水的存在。
科学家们认为,该行星的自转、来自于主星的高能辐射以及行星的演化历史等,注定了其气候非常不同于地球。行星的自转轴与公转平面的夹角接近90度,表明该行星很可能就没有季节交替。而模拟计算过程中最大的不确定性因素是行星早期的水含量。地球表面的水含量是150亿亿吨,将它定义为一个“海洋”。参考太阳系内行星的形成和演化,计算显示该行星很可能在诞生之后的1亿年到2亿年期间,就蒸发损失了近1个海洋。
随后发生了什么,就更加不确定了。有可能,行星能维持了其大部分的大气层,从而留住了行星表面尚存的液态水,提供了一个适宜生命的场所;但也有可能,水被蒸发,大气层消失,成了一个没有大气和水的地狱。既然两者皆有可能,那也就是说,它仍然可能是颗距离我们最近的宜居行星。
究竟情况如何,还亟待后续的观测和理论研究。而这一发现也势必会引发下一轮观测热潮,现有的设备和下一代巨型望远镜也将以比邻星作为观测目标之一,观测探索其更多的细节。例如,若能看到行星运动至比邻星前方,使得比邻星发出的光通过行星大气,再抵达望远镜,那么就可以通过观测数据反推其大气成分,还可以帮助更准确地确定行星的质量。目前还没有证据表明,行星的运动轨迹允许我们做这样的观测,所以上述可能性还在探索中。