超导是20世纪最伟大的发现之一,它的发现不仅揭示了一个新奇的微观量子世界,而且为凝聚态物理开辟了新的研究方向。铁基超导体,作为继铜氧化物高温超导体发现后的第二个高温超导体家族,再一次打破了人们对传统超导的认识,为高温超导的研究打开了另外一扇大门。
超导现象最早是由荷兰物理学家昂内斯(Kamerlingh Onnes)于1911年研究金属汞(Hg)在低温下的电阻时发现的:当温度降至4.2K以下时,汞的电阻突然消失。这种在低温下发生的零电阻现象被称为超导,电阻消失的温度叫做超导体的超导转变温度。
除了零电阻,超导体还有另外一个基本特性——迈斯纳效应(完全抗磁性),即当超导体处于超导态时,超导体内部的磁场为零。超导体的完全抗磁性不能由零电阻的性质推演出来,二者相互独立,同时具有这两个性质的材料才叫做超导体。
1957年,由巴丁(John Bardeen)、库伯(Leon Cooper)和施里弗(John Robert Schrieffer)提出的著名的微观超导理论——BCS 理论,非常成功地解释了金属或合金超导体的物理性质。
自1911年第一次发现超导电性以来,超导研究始终沿着两个重要的方向发展,一是探索新的超导材料,不断提高超导转变温度,另一个则是阐明超导机理,从微观层面上解释为什么电子能够在固体材料中畅通无阻。
1986年,瑞士科学家Bednorz和Müller公布了他们在La-Ba-Cu-O化合物中观察到起始超导转变温度为35K的结果,这一出人意料的发现开创了TC的新纪录,在全世界范围内引起了探索高温超导体的热潮。随后发现的Y-Ba-Cu-O体系中存在90K以上的临界温度,首次突破了液氮温区,远远超过了麦克米兰极限。
2008年,日本东京大学的细野秀雄研究小组利用F替代O,在铁砷族化合物La[O1-xFxxFeAs中发现了2K的超导转变,铁基超导体被正式宣布发现。La[O1-xFxxFeAs在高压下可以达到43K的超导转变,再一次突破了麦克米兰极限,高温超导从此打开了一条新的通路。中国科学家的努力,让铁基超导跻身成为第二大高温超导家族,在铁基超导的洪流中做出了不可磨灭的贡献。
目前已经发现的铁基超导体家族,从晶体结构上可以分为:(1)11体系,即FeSe(Te),是晶体结构最简单的铁基超导体。值得一提的是,利用分子束外延生长的FeSe/SrTiO3薄膜,超导转变温度超过65K,受到了广泛的关注。(2)111体系,即AFeAs(A为Li、Na等),LiFeAs的超导转变温度可以达到18K。(3)122体系,即AeFe2As2(Ae为碱土金属元素,如Ba、Sr、Ca等)。
由于高质量、大尺寸、不同掺杂浓度的122 体系超导单晶比较容易获得,因此122 体系是目前实验(ARPES、STM、Neutron Scattering)研究最多的铁基超导体之一。(4)1111体系,即LnOFeAs(Ln为稀土元素,如La、Ce、Pr、Nd、Sm等)。
赵忠贤院士领导的研究小组在利用高压合成技术合成Sm[O1-xFxxFeAs中获得了55K的超导转变温度,目前保持着铁基超导体块材的最高记录。(5)其它体系,如基于11 体系插层形成的AxFe2−ySe2(A=K、Rb、Cs、Ti等),Aen+1MnOyFe2As2,Aen+2MnOyFe2As2[Ae=Ca、Sr、Ba,M=Sc、V、(Ti, Al)、(Ti, Mg)、(Sc, Mg)]等。
铁基超导体打破了铁元素不利于超导的传统认识,推动了多轨道关联电子系统的研究和发展。与铜氧化物一样,铁基高温超导体研究蕴含着丰富的物理内涵。此外,铁基超导体具有非常高的超导临界磁场,制作工艺比较简单,有希望用于制备新一代超强超导磁体,有着很好的应用前景。
作为继铜氧化物高温超导体之后的第二大高温超导家族,铁基超导体的发现开辟了另外一条研究高温超导机理的道路,人们普遍相信距离建立高温超导微观理论已不远。超导研究继续充满着惊奇、机遇和挑战。期待在不远的将来,室温超导的梦想可以成为现实。