辍学写诗的数学差生,刚刚获得菲尔兹奖

作者: 凯文·哈特尼特

来源: 知识分子

发布日期: 2022-07-06 08:00:42

许埈珥,一位从辍学写诗的数学差生成长为菲尔兹奖得主的数学家,通过将霍奇理论的思想引入组合学,证明了多个重要猜想,如几何格的Dowling–Wilson猜想和拟阵的Heron–Rota–Welsh猜想。他的工作不仅展示了数学领域之间的深刻联系,也为解决组合学中的未解问题提供了全新视角。

2022年7月5日,4位年轻数学家获得了2022年“菲尔兹奖”。他们分别是:36岁的瑞士日内瓦大学/法国高等科学研究所教授Hugo Duminil-Copin,“表彰解决了统计物理中/相变的/概率理论里(尤其在三维和四维情形下)若干长期没有解决的问题”。

39岁的美国普林斯顿高等研究院June Huh(许埈珥),“表彰其将霍奇理论的思想引入组合学,证明了几何格的Dowling–Wilson猜想,证明了拟阵的Heron–Rota–Welsh猜想,发展了洛伦兹多项式,以及证明了强梅森猜想。”35岁的英国牛津大学教授James Maynard,“表彰其对解析数论的贡献,在理解素数的结构和丢番图逼近方面取得了重大进展。

”37岁的瑞士洛桑联邦理工学院教授Maryna Viazovska,“表彰其证明E8格在8维中提供了相同球体的最密集堆积法,并对傅立叶分析中的相关极值问题和插值问题作出了进一步的贡献。”

2017年一个温暖的春日清晨,许埈珥(June Huh)步行穿过普林斯顿大学的校园。按计划,他将前往麦克唐奈楼上课,但他不太确定怎么去那里。

许埈珥是普林斯顿高等研究院的一员,这一远离俗世的研究院毗邻普林斯顿大学校园。作为高等研究院的成员,许埈珥并没有教课的义务,但他自愿教一门叫作“交换代数”的本科高级数学课程。被问及为什么要这样做时,他说:“当你教课时,你多少会做一些有用的事。但做研究时,大多数时候你都在做无用功。”

许埈珥在数学生涯伊始并没有得到太多赞誉。小学时考试成绩的不理想使他确信自己并不擅长数学。

十几岁时,他的梦想是成为一名诗人。许埈珥的主修专业并不是数学,当他最终申请研究生时,除一所大学外,其他大学都拒绝了他。9年后,34岁的许埈珥已经站在了数学世界的顶峰。他最著名的工作,是与数学家埃里克·卡茨(Eric Katz)和卡里姆·阿迪普拉西托(Karim Adiprasito)一起,证明了罗塔猜想(Rota’s conjecture)这一长期存在的问题。

1983年,许埈珥在美国加州出生,当时他父母正在那儿读研究生。两岁时,他们一家人回到了韩国首尔。在那里,许埈珥的父亲教统计学,他母亲成为冷战开始以来韩国最早的俄罗斯文学教授之一。许埈珥说,在一次糟糕的小学数学考试之后,他对这门学科采取了一种抵抗的态度:他认为自己并不擅长数学,所以决定将其视为“把一个逻辑上必要的陈述叠加在另一个陈述上”的无趣追求。

十几岁时,他转而喜欢上了诗歌,认为诗歌是一种真正的创造性表达。

2002年,许埈珥考入首尔国立大学,当时他就认定自己无法以诗人的身份谋生,于是决定改行当一名科学记者。许埈珥在大学期间主修天文和物理,这也许是无意识地承认了自己潜在的分析能力。大学最后一年时,许埈珥24岁。那一年,著名的日本数学家广中平祐以客座教授的身份来到首尔国立大学。广中平祐意外的学徒当时已经70多岁了,在日本和韩国家喻户晓。

他于1970年获得菲尔兹奖,后来写了一本十分畅销的回忆录《创造之门》(The Joy of Learning)。那一代韩国和日本的父母都会把这本书送给自己的孩子,希望自己的下一代能成为伟大的数学家。在首尔国立大学,广中平祐开设了为期一年的代数几何(一个非常广泛的数学领域)讲座课程。许埈珥也选了这门课,他觉得广中平祐有可能成为他记者生涯中的第一个采访对象。

许埈珥开始了一项最终帮助他证明了罗塔猜想的工作。罗塔猜想是意大利数学家吉安–卡洛·罗塔(Gian-Carlo Rota)在1971年提出的,它研究的是组合对象——组合对象是一些类似于万能工匠玩具的构造,比如图(graph)这种点和线段粘在一起的“组合”。许埈珥无意中对里德猜想的证明,以及他将奇点理论与图相结合的方式,都可以看作其朴素数学方法的产物。

他了解奇点理论的方式主要是自学和跟随广中平祐的非正式学习。观察过他在过去几年崛起过程的人认为,正是这种经历让他没那么受制于关于哪些数学方法值得尝试的传统观点。

许埈珥把自己对里德猜想的证明发布到网上后不久,密歇根大学邀请他去做报告,专门介绍这一结果。2010年12月3日,许埈珥在一个坐满了数学家的房间里开始了自己的报告,而这些数学家正是一年前拒绝了他的研究生申请的那批人。

至此,许埈珥的天赋在其他数学家眼中已是显而易见。许埈珥无意中对里德猜想的证明,以及他将奇点理论与图相结合的方式,都可以看作其朴素数学方法的产物。他了解奇点理论的方式主要是自学和跟随广中平祐的非正式学习。观察过他在过去几年崛起过程的人认为,正是这种经历让他没那么受制于关于哪些数学方法值得尝试的传统观点。

许埈珥刚到伊利诺伊时并不知道里德猜想。

大多数一年级的研究生在课堂上花费的时间要多于在自己研究上的时间,但在结束了跟随广中平祐的三年学徒生活之后,许埈珥有了自己要研究的想法。寻找隐藏的结构在到美国中西部后度过的第一个冬季,许埈珥发展了将奇点理论(这是他跟广中平祐学习的重点)应用于图的技术。

在此过程中,许埈珥发现当他从图中构造出一个奇点时,他就可以用奇点理论来证明原来这个图的很多性质——例如,解释为什么一个图的色多项式的系数会遵循对数凹模式。

2017年3月,广中平佑在哈佛大学他曾经的个人主页上发布了一篇长文,宣称给出了一个证明。包括许埈珥在内的一些数学家已经初步审查了这一工作,但尚未验证该证明是否成立。广中平祐的身体状况已不再适合长途旅行,但他还是希望能再次看到自己的爱徒。“我只能从别人那里听到他的消息。”广中平祐说。

一天下午,我们在高等研究院校园内许埈珥的公寓里喝咖啡,我问他,他对没有从事广中平祐可能希望他从事的领域有何感想。

他想了一会儿,说他很愧疚。他说:“和广中先生在一起的很多时候,我都不得不假装自己理解他的意思。由于缺乏数学背景,我无法和他一起进行严肃的研究。这给我留下了一份需要长期补习的功课。”与此同时,许埈珥认为,自己从数学启蒙到今天所走过的道路,对他的工作发展是有利的,或许还可以说是必要的步骤。我们在普林斯顿的一个街角分别时,他说:“我需要思考的空间。”然后,他就遁入了高等研究院安静的氛围。

许埈珥找到了自己进入数学的路,现在他在路上了,他将通过它找到自己的路。

UUID: 02d61462-d415-4858-b25d-14d6f5789c20

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2022年/知识分子_2022-07-06_辍学写诗的数学差生,刚刚获得菲尔兹奖.txt

是否为广告: 否

处理费用: 0.0119 元