超构材料告诉我们,自然定律并不总像看上去那样固定不变。作为光学定律之一,折射定律表明:当光线从一种透明介质射向另一种透明介质时,它会在两种介质的交界面发生偏折,而偏折的程度取决于这两种介质的折射率。真空(或者粗略地讲,空气)的折射率被设定为1,而其他所有透明材料的折射率都大于1。然而,一定如此吗?
20世纪60年代,俄罗斯物理学家维克托·韦谢拉戈在理论上提出,当材料具有某些特殊性质时,它的折射率可以小于1,甚至是负值,并因此以“错误的方式”使光线偏折。韦谢拉戈的理念被人遗忘,直到20世纪90年代才被电气工程师戴维·史密斯重新发现。他很想知道能不能从“人工原子”出发,制造出后来被称作“超构材料”的韦谢拉戈所预言材料的放大版,使其在比可见光更长的波长,即微波波段,也具有这种奇特性质。
碰巧,伦敦帝国理工学院的物理学家约翰·彭德鲁提出了采用线圈制造类似结构的方法。史密斯和同事在1999年发明了一种负折射率材料——正是在发表这项工作时,他们才重新发现了韦谢拉戈发表于1967年的那篇极具先见的论文。史密斯后来去了位于北卡罗来纳州的杜克大学,并与彭德鲁合作建立了名为“变换光学”的一般性理论,来描述这种材料如何以新奇而意外的方式操纵光的路径。
2006年,他们设计并制作了一种更加新奇的超构材料器件。它可以偏折光线(更准确地说,偏折微波),使其绕过物体,从而使该物体隐形。这一引人注目的创新成果使超构材料领域的研究正式启航。《国家科学评论》对约翰·彭德鲁的此次专访正是聚焦于这一物理、材料和工程的交叉学科,探讨超构材料的历史与未来。超构材料的性质源于其内部的微观结构,而非其化学组成。
这种微观结构必须比所用的电磁波长更精细,使得超构材料能够被有效电容率ε(对建立内部电场的阻抗)和有效磁导率μ(支持内部磁场的能力)所描述。这个理念源自我在马可尼公司时进行的一项关于雷达波吸收材料的工作。该材料由重叠的极细碳纤维组成。我们很快认识到纤维结构是理解这种材料宽带吸收性质的关键。这让我们意识到其他结构也可能产生有价值的新材料。
碳纤维的工作直接衍生出了能够产生人工等离子体的细线结构,它在微波频段的ε为负值。
超构材料在电磁学中已经有了激动人心的应用。我们还可以期待等离子领域的进展,因为结构对于等离子激元光频的测定非常关键。声学一直是一个成果颇丰的领域。由于不变性等问题的存在,在固体声学中推广变换光学还有困难;但在液体声学中,变换光学是有机会的。电磁学中,对于更精密的设计,损耗通常是个问题;但在声学中,有许多极低损耗的材料可供实用。