物理学的现象学

作者: 廖玮

来源: 现代物理知识杂志

发布日期: 2021-10-01 14:31:26

本文探讨了物理学中的还原论和演生论的争论,以及现象学思路在物理学研究中的重要性。通过历史案例分析,文章强调了发现“现象运作的模式”是发现“现象背后的原因”的基础,这两种思路在科学研究中都不可偏废。

在物理学中有所谓还原论 (reductionism) 和演生论 (emergence) 的争论。还原论观点认为,物理问题可以简化成关于物质的基本组成以及基本组成的相互作用的问题,复杂的事物和现象可以最终由简单的基本组成和基本相互作用来解释。还原论是一种以少量原理理解万事万物的思路,很多人认为这是物理学的传统思路。

这种思路体现在物理学的许多方面,例如把物质还原为原子分子、把原子还原为原子核和电子、把原子核还原为质子和中子、把质子中子还原为夸克。粒子物理标准模型的建立最终统一了电磁力和弱力,并且使人们认识到电磁力、弱力和强力都是同一种类型的力,即规范相互作用,因此粒子物理标准模型一般被认作是还原论思路的成功典范。

演生论观点认为,宏观尺度的问题十分复杂,大量原子分子的复杂行为并不总是可以还原论式的由单独原子分子的性质而简单地推导出来。相反地,演生论认为,宏观现象的规律往往不能简单地由微观粒子的性质推导出来,而是需要通过复杂的系统行为来理解。著名凝聚态物理学家、诺贝尔物理学奖获得者安德森(P. W. Anderson)在1972年的论述《More is different》被认作是演生论的宣言。

当代凝聚态物理的基石,朗道 (L. D. Landau) 的费米液体理论和威尔逊 (K. G. Wilson) 关于相变的重整化群理论,被认为是演生论思路的成功典范。朗道的费米液体理论认为,可以把具有复杂的相互作用的多粒子费米系统视为一种自由的多粒子费米系统,这种多粒子费米系统由自由的 “准粒子” 构成,而且这种“准粒子”只能在多体系统中 “存在”,不能单独 “存在”。

朗道的费米液体理论描述了几乎所有已知金属的低温物理性质,获得了惊人的成功。

许多人认为物理学中的演生论思想起于上个世纪 50-60 年代, 是随着凝聚态物理的发展而来的。例如,著名凝聚态物理学家、诺贝尔物理学奖获得者莱格特 (A. J. Leggett) 认为朗道费米液体理论的发明标志着凝聚态物理研究的范式转换。其后,关于相变的重整化群理论的成功以及普适性和破缺对称性思想的发展进一步展现了演生论思路的威力。

然而,如果仔细考察物理学的历史,我们可以发现演生论的思路实质上是现象学的思路。这种现象学的思路并不是新生的思路,而是早已存在于物理学的血脉之中的思路,可以说是自诞生之日起物理学就具有的最典型的研究思路,也是广泛存在于物理学众多分支和历史中的思路。

对比伽利略、开普勒和牛顿的贡献,我们可以很清楚地发现伽利略和开普勒的发现可以说是发现 “现象运作的模式”, 而牛顿建立力学的综合体系以及发现万有引力可以说是发现 “现象背后的原因”, 而这两者是现象学思路的两个方面。

牛顿的综合力学体系和引力的平方反比律把从天上到地上的许多运动现象都归结为少数几条原理。特别是质量概念的引入使人们可以对比不同物体在不同力的作用下的不同运动,使它们被联系在一起,并且被归结于相同的运动学原理。在这个意义上,牛顿的综合确实是找到了 “事物背后的原因”。世人把牛顿力学当作科学的典范,正是因为牛顿力学成功展现了这样一种把许多现象归结于少数原理的可能。

与牛顿形成对比的是,伽利略和开普勒的主要贡献是在现象的层面揭示现象的运作模式。他们做的是通过现象与现象的关联揭示现象运作的模式,又通过现象运作的模式建立更多的现象与现象之间的关联。开普勒发现的行星运行的三大定律很明显是行星运行的模式,开普勒只是从观测数据中揭示了这个模式。当然揭示这个模式需要很多的思考和想象,但是这些规律并不是行星运动的“背后的原因”。

伽利略对自由落体运动的研究就是通过现象与现象之间的关联发现运动的模式。伽利略还建立起沿斜坡上的运动与垂直自由落体运动之间的关联,通过研究沿斜坡的运动来研究重力导致的运动,进而研究抛射体的运动。这些对物体运动问题的研究,最终形成了一个整体图像,关联到更多现象,变成了对日心说和地动说的支持。

需要注意的是,发现 “现象运作的模式” 和发现 “现象背后的原因” 这两个层次上的区别并不是可有可无的语言游戏。物理学历史上有许多例子说明这两者的区别,这些例子同时也说明了发现的主要路径是先发现 “现象运作的模式”,再发现 “现象背后的原因”,这是许多科学发现所经过的路径,这也就是本文强调的现象学的思路。

一个典型的例子是热力学与统计力学的对比。

热力学使用热、温度、压强、体积、做 功、能量、平衡态等概念描述系统的热学以及力学行为。虽然热力学是以抽象的方式以及数学化的方式讨论问题,但是热力学使用的概念是停留在现象层面的,是对现象的直接抽象。热力学的内容是对宏观现象抽象研究的结果,完全不依赖于物质的组成是什么。热力学的内容是典型的揭示 “现象运作的模式”。

统计力学是以大量看不见的原子分子的运动和关于微观世界的原理来解释宏观系统的热学性质和力学性质,是典型的以 “现象背后的原因” 来解释现象。

我们可以看到,海森堡的同位旋是典型的现象学研究的结果。他提出的规则基于现象,是对现象的抽象。这个规则并不是 “现象背后的原因”,而仅仅是对 “现象运作的模式” 的一个抽象表达。杨振宁对同位旋对称性的成功印象深刻,他试图找到能够理解强相互作用的原理,他把电磁相互作用中的规范对称性推广到同位旋,在上世纪五十年代提出了基于同位旋对称性的非阿贝尔规范理论,即杨-米尔斯理论。

发现 “现象运作的模式” 是发现 “现象背后的原因” 的基础,这两种思路都不可偏废。如果人们不能认识到这两种思路的不同,特别是不能认识到在现象的层次发现 “现象运作的模式” 的重要性,科学研究就很可能陷入空想之中。古希腊哲学家探讨本性和本质问题,专注于讨论 “现象背后的原因”,不知道需要首先发现 “现象运作的模式”,也就很难取得实质的进步。

总之,“现象运作的模式” 和 “现象背后的原因” 是物理学的现象学研究的两个方面, 一个代表了物理学研究的路径和方法,一个代表了物理学研究的目标和动力, 人们不应该把这两个方面对立起来。关于物理学的现象学的更多论述,可见于本文作者的著作《科学思维的价值--物理学的兴起、科学方法与现代社会》。

UUID: 23f7cde1-d744-4004-ac84-fbcd6c43e809

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2021/中科院物理所_2021-10-01_「转」物理学的现象学.txt

是否为广告: 否

处理费用: 0.0113 元