4.6692……:一个比圆周率更神秘的常数。40多年前,洛斯阿拉莫斯国家实验室的一位助手对一类数列的研究引起了轰动,因为它涉及了大自然的核心秘密:从这个数列中,可以发现大自然中一个基本的无量纲常数——4.6692……。这个常数像圆周率一样,充满了神秘的未知,也引领着科学的发展。
米切尔·费根鲍姆(Mitchell J. Feigenbaum)1944年出生在美国费城。
第二次世界大战结束后,费根鲍姆一家迁回纽约布鲁克林居住。他的父亲在纽约港务局工作,母亲在公立学校教书。在少年时代,费根鲍姆对电气工程师产生了朦胧的兴趣,因为他了解到电气工程师可以研究收音机,而且收入很高。因此,高中时的他选择了纽约市立大学的电气工程专业。不过,他上了大学才明白,自己渴望了解的收音机知识“只不过是物理学的一小部分”。
所以,1964年从纽约市立大学毕业后,费根鲍姆进入麻省理工学院攻读粒子物理学的博士学位。1970年,费根鲍姆获得物理学的博士学位,但这时,费根鲍姆对物理学的兴趣也有所转移,他开始喜欢上了数学——严格来说,他希望用当时还比较罕见的计算机来算一些数字。在他之前,已经有一位叫洛伦兹的物理学家利用计算机做天气预报,计算机编程也开始成为科学研究的手段。
洛伦兹首次在微分方程组中发现了“混沌现象”的代表——蝴蝶效应。
博士毕业后,费根鲍姆进入了康奈尔大学,但因为他很少发表论文,看起来物理研究做得很一般。1972年,费根鲍姆来到弗吉尼亚理工学院,一边教书一边思考自己感兴趣的数学问题。这时的他有点“非主流”——当时粒子物理学家的“主流”工作是,面对加速器对撞机不断生成的粒子数据,研究标准模型、解释强相互作用与弱相互作用的本质。1974年,他跳槽到洛斯阿拉莫斯国家实验室理论部给一个教授做助手。
为了理解费根鲍姆的发现,我们需要从数列的周期说起。最简单的周期性数列可以很任意,比如以下数列:1,2,1,2,1,2 ……。当然,还有一些数列的周期性则要复杂的多,也要有趣得多。费根鲍姆研究的数列也可以表现出周期性,而且随着参数b的不断增加,它表现出来的周期性会不断增加,会从二周期变成四周期,然后变成八周期……这个数列在数学或者物理学上被叫做“逻辑斯蒂映射”或者“抛物线映射”。
如果只发现了这些现象,是无法构成一篇完美、具有历史价值的论文的。但是,费根鲍姆的伟大之处在于,他开始考虑当参数b满足什么条件时,会出现倍周期的分叉、这些分叉点的参数b又有什么特点。终于,在1978年的《统计物理学》期刊上,费根鲍姆发表了他的重要发现。在费根鲍姆的发现中,出现倍周期分叉的相邻参数b之间可以定义出一个差值(相当于距离)。
费根鲍姆的重要发现如下:出现倍周期分叉的b的那些数值,距离之比接近一个常数,这个常数大概等于4.6692……。
费根鲍姆常数与混沌理论有着密切的联系。费根鲍姆常数在抛物线映射中发现的倍周期分叉,其实是另一种“混沌”的前奏(数列是一种离散动力系统,离散动力系统中也存在混沌)。由于费根鲍姆的常数大于1,也就是说倍周期分叉的“距离”之比是一个等比数列,而这个等比数列虽然有无限多项,但总和是有限的。
在参数b小于3.57时,这种以2为周期开始的倍周期分叉已经结束了。而当参数b大于3.57时,开始出现周期3开始的倍周期分叉——而根据李天岩与约克的定理:“周期3的出现预示着混沌的出现”,这意味着在抛物线映射中,也是可以出现混沌的。无论是洛伦兹发现的微分方程(连续动力系统)中的混沌,还是费根鲍姆发现的数列中的混沌,都标志着一项新的物理学革命。
混沌现象都是用计算机意外发现的,这也是电脑帮助人们做科学研究的典范。