18世纪中叶,物理学家在认识到运动物体有动能,地面上空的物体又有势能(两者即机械能)之后,又进一步认识到物体的内部也具有能量(即内能),这是人类对能量的认识和利用历史上的一次大飞跃。为了利用蕴藏在物体内部的能量,使它们转化为机械能,开动各式各样的机器,就需将研究热量和内能的热学与研究做功和机械能的力学相结合,形成热力学,以便探究内能和机械能之间的转化规律。
热力学最基本的规律是热力学第一定律和热力学第二定律(或熵增加原理),内能和熵就是与这两个基本定律相联系的两个重要的物理量。人们利用这些物理概念和物理规律,可更加合理、有效地开发和利用内能。此外,由于热运动的普遍性,一切过程,包括物理、化学、生命和宇宙等领域中的一切运动变化过程都必然遵循热力学基本规律。
“熵”这一概念的重要性不亚于“能”,它不仅应用于“热效率”这类对社会发展起到关键作用的科技领域,而且还广泛地应用于物质结构、凝聚态物理、低温物理、化学动力学、生命科学和宇宙学以及诸如经济、社会和信息技术等领域。鉴于熵这一概念的基础性和重要性,我国近期出版的各套中学物理教材中都编入了这方面内容。为了更好地理解和掌握这些内容,本文将对熵的定义及其在宏观和微观上的物理意义作简单介绍,以供参考。
1.熵是描述自然界一切过程具有单向性特征的物理量。热传导、功变热和气体自由膨胀等物理过程具有单向性(或不可逆性)特征,热量能自发地从高温物体传到低温物体,但热量从低温物体传到高温物体的过程则不能自发发生;机械功可通过摩擦全部转化为热,但热不可能全部转化为机械功;气体能向真空室自由膨胀,使本身体积扩大而充满整个容器,但决不会自动地收缩到容器中的一部分。
德国物理学家克劳修斯首先注意到自然界中实际过程的方向性或不可逆性的特性,从而引进了一个与“能”有亲缘关系的物理量——“熵”。熵常用S表示,它定义为:一个系统的熵的变化ΔS是该系统吸收(或放出)的热量与绝对温度T的“商”,即ΔS=ΔQ/T。当系统吸收热量时,取为正;当系统放出热量时,ΔQ取为负。这里我们定义的是熵的变化,而不是熵本身的值。
这种情况与讨论内能或电势能和电势时一样,在这些问题中重要的是有关物理量的变化量。
2.熵是能量退化程度的量度。从热力学第一定律可知,某理想热机M自温度为T1的高温热源吸热Q1,向温度T0的低温热源放热Q2,对外做功为W,其效率为η=W/Q1=(Q1-Q2)/Q1=1-Q2/Q1=1-T0/T1。
其中第二个等号利用了热力学第一定律,最后的等号则利用了“卡诺定理”,即工作于两个恒定温度之间的一切理想卡诺热机的效率与工作物质无关,只是两热源温度的函数。克劳修斯正是根据这个结果引进了“热力学温标”,并规定:Q2/Q1=T0/T1。由(2)式可知,W=Q1(1-T0/T1);Q2=Q1T0/T1,分别是Q1中的“可用能”和“不可用能”。
3.熵是宏观态出现概率大小的量度。
统计规律性是大量粒子系统的一个普遍特性,自然界的自发倾向总是从概率小的状态向概率大的状态过渡。按照“熵增加原理”,宏观系统的熵S应当随宏观状态出现概率Ω的增加而增加。德国物理学家玻耳兹曼于是从微观上将熵定义为S=klnΩ。式中k是自然界中的一个普适常量,称为玻耳兹曼常数。如果系统的初态与末态出现的概率分别Ω1和Ω2,则按照上式定义,系统从1到2过程中熵变为ΔS=S1-S1=kln(Ω2/Ω1)。