重磅!清华大学基础模型研究中心发布《SuperBench大模型综合能力评测报告》

作者: 基础模型研究中心

来源: 清华大学基础模型研究中心

发布日期: 2024-04-18 14:05:50

清华大学基础模型研究中心发布了《SuperBench大模型综合能力评测报告》,评测了14个海内外具有代表性的模型,结果显示GPT-4系列模型和Claude-3等国外模型在多个能力上依然处于领先地位,国内头部大模型GLM-4和文心一言4.0表现亮眼,与国际一流模型水平接近,但在代码编写和作为智能体的能力上仍有较大差距。

在2023年的“百模大战”中,众多实践者推出了各类模型,这些模型有的是原创的,有的是针对开源模型进行微调的;有些是通用的,有些则是行业特定的。如何能合理地评价这些模型的能力,成为关键问题。尽管国内外存在多个模型能力评测榜单,但它们的质量参差不齐,排名差异显著,这主要是因为评测数据和测试方法尚不成熟和科学。好的评测方法应当具备开放性、动态性、科学性和权威性。

为提供客观、科学的评测标准,清华大学基础模型研究中心联合中关村实验室研制了SuperBench大模型综合能力评测框架,旨在推动大模型技术、应用和生态的健康发展。近期,我们发布了2024年3月的《SuperBench大模型综合能力评测报告》。在此评测中,我们选定了14个海内外具有代表性的模型进行测试。对于闭源模型,我们选取API和网页两种调用模式中得分较高的一种进行评测。

根据我们的评测结果,我们得出以下几个主要结论:整体来说,GPT-4系列模型和Claude-3等国外模型在多个能力上依然处于领先地位,国内头部大模型GLM-4和文心一言4.0表现亮眼,与国际一流模型水平接近,且差距已经逐渐缩小。国外大模型中,GPT-4系列模型表现稳定,Claude-3也展现了较强的综合实力,在语义理解和作为智能体两项能力评测中更是获得了榜首,跻身国际一流模型。

国内大模型中,GLM-4和文心一言4.0在本次评测中表现最好,为国内头部模型;通义千问2.1、Abab6、moonshot网页版以及qwen1.5-72b-chat紧随其后,在部分能力评测中亦有不俗表现;但是国内大模型对比国际一流模型在代码编写、作为智能体两个能力上依然有较大差距,国内模型仍需努力。

UUID: 096691ce-0136-4247-843c-a0b7b890ca6d

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/学术头条公众号-pdf2txt/学术头条2024年/学术头条_2024-04-18_「转」重磅!清华大学基础模型研究中心发布《SuperBench大模型综合能力评测报告》.txt

是否为广告: 否

处理费用: 0.0082 元